LLVM/OpenMP

A Bnef Update

Why LLVM/Clang/Flang (for HPC)?

open (source/community/...)

- extensible, “fixable” |
portable (GPUs®, CPUs, ..) @LLyMmIaE e

- OpenMP/C++/... feature complete™ [¥ eventually]

- early access 1o *the coolest™* features

. glS it gED
|

- performant and correct ;)

= =i AR Ny -.4“5 Y

LOT'S OF CONTENT, NO TIME, VSE THE SLIDES AND GET (N TOVCH!

y— T —

LLVM/OpenMP - A Community Effort

Weekly Meeting: https://bit.ly/2Zqt49v

- “Academia” Industry Power Users |
-~ Joseph Huber (ORNL) * Alexey Bataev (Intel) % Ye Luo (ANL) |
. % Shilei Tian (SBU) % Jon Chesterfield (AMD) % Christopher Daley (NERSC)
% Giorgis Georgakoudis (LLNL) Y George Rokos (Intel) % John Tramm (ANL)
~ % Michael Kruse (ANL) % Pushpinder Singh (AMD) % Rahul Gayatri (NERSC)
e % Joachim Protze (RWTH A)) % Kiran Chandramohan (ARM) Itaru Kitayama (RIKEN)
~ % Joel Denny (ORNL) % Chi Chun Chen (HPE/Cray) % Wael Elwasif (ORNL)
1§ % Valentin Clement (ORNL, % Andrey Churbanov (Intel) % More that | have forgotten
L now NVIDIA) % Carlo Bertolli (AMD)
% Many, many, more % Many, many, more

o
g 9@

p— Y T —

Simple Profiling Support (LLVM 12)

Use

to portably profile target interactions.

Chrome tracing format, source line information, ...

LIBOMPTARGET_PROFILE=file.json

. Time Order - Left

Total

9.52s (41%)

7.39s (32%)

5.59s (24%)
241.92ms (1.0%)
148.44ms (6. 64%)
113.16ms (0.49%)
39.54ms (0.17%)
10.33ns (o
904.00ps (<6.
729.00us (<o0.
11.13ms (o.
932.00us (<6.01%)

Heavy |# Sandwich
v self
9.52s (41%)
7.39s (32%)
5.59s (24%)
241.92ms (1.0%)
148.44ms (0.64%)
113.16ms (0.49%)
39.54ms (0.17%)
10.33ms (©.04%)
904.00us (<0.01%)
729.00us (<0.01%)
77.00us (<0.01%)
28.00ps ((0.01%)

Libompt
Symbol Name
runTargetTeanRegion {"detat /dev/shm/jdoer fer
runTargetTeanRegion {"detaj /dev/shm/jdoerfer”

mappingAfterTargetRegion {"detail":"; /dev/shm/jdos
__tgt_register_1ib

--tBt_target_data_begin_mapper {"detail":"; /dev/s)
mappingAfterTargetregion {"detail":"; /dev/shm/jdoc
--tgt_target_data_begin_mapper {"detail":v;/dev/s|
runTargetRegion {"detail":"; /dev/shn/jdoer fert /mis

mappingAfterTargetregion {"detail":";/dev/shm/jdor

mappingAfterTargetregion {"detail":"; /dev/shm/jdoc
—__tgt_target_mapper {"detail":"; /dev/shm/jdoer for:
—_tgt_target_mapper {"detail":"; /dev/shm/jdoer fer:

PROFILING OPEnmMP OFFLOAD

WITH LIBoMPTARGET: Prorn

https://openmp.llvm.orq/design/Runtimes.html#libomptarget-profile

https://openmp.llvm.org/docs/design/Runtimes.html#libomptarget-profile

Debiceine OpenP LV 122y =

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -03 -gline-tables-only sum.cpp -o sum

~$./sum

CUDA error: Error when copying data from device to host.

CUDA error: an illegal memory access was encountered

Libomptarget error: Copying data from device failed.

Libomptarget error: Call to targetDatakEnd failed, abort target.

Libomptarget error: Failed to process data after launching the kernel.

Libomptarget error: Run with LIBOMPTARGET INFO=4 to dump host-target pointer mappings.
sum.cpp:5:1: Libomptarget error 1: failure of target construct while offloading is mandatory

-~ #include <cstdios

double sum(double *A std:irsi l
double sum = 0.0; ' L
#pragma omp target teams distri
. istrib
for (int i =0; j < N; ++i) g
sum += A[i];

return sum; E

}

int main() {
const int N = 1024;
double A[N];
sum(A, N);

My Fiesr Sreump

~ e

Y S
e Lol

vIsSIT

Debugging OpenMP (LLVM 12+) R eRE
REGULARLY.
LLVM 12 introduced
LIBOMPTARGET_INFO=<bitfield> FEEL FREE TO SUGGEST
to portably and reliably debug offloading. CONTENT + FAQ ENTRIES!

Supports OpenMP runtime debug messages as well as “plugin” debug messages.

Available in release mode!

https.//openmp.llvm.org/design/Runtimes.html#libomptarget-info

N
— I —

https://openmp.llvm.org/docs/design/Runtimes.html#libomptarget-info

i 7}).i 1 gL 4 ; 3
i il _J:' 7~L 4 5P§w_ 3 ;ﬂ : .;; % l‘:"?i”* il 0
& Debugging OpenMP (LLVM 14)
e A plugin t_o ofﬂo;__c;i to a virtualized GPU (VGPU).
’ -1l

Dévice compilation and runtime executed on the host
~ =>host tooling (gdb, sanitizers, ...) works natively!

* thread #2, name = 'XSBench‘, stop reason =

signal SIGSEGV: invalid address (fault address

1 0x0)

* frame #0: ox. .. tmpfile_gmU3b1 -
fast_forward_LCG(seed=1070, n=0) at
Simulation.c:371:20

frame #1. 0x. .. tmpfile_gmU3b1 -

__omp_outlined___debug__.1(...) at
Simulation.c:59:10

OPENMP OFFLOAD TO A
VIRTUAL GPV, ... cooL

32X

1< \Weak scaling to 72 GPUs
=> 2x overhead compared
10 local execution (8 GPUSs).

(o)
X

" Remote OpenMP offloading (LLVM 12+)

Runtime [normalized to Nz]
['SN
X

o
X

Utilize remote GPUs (and CPUs) as if
: they were local.

1x

L 1 o2 3
8 Rg Ris R ‘Rgz Rio Ris R576 R& ﬂ?z

Also allows to debug memory mapping
errors on a single host!

A

RSBench remote offloading performance

{

N

— e e S TR

https://openmp.llvm.org/design/Runtimes.htmli#llvm-openmp-target-host-runtime-plugins-libomptarget-rti-xxxx

5o T ¥ (5

https://openmp.llvm.org//design/Runtimes.html#llvm-openmp-target-host-runtime-plugins-libomptarget-rtl-xxxx

OpenMP-Aware Optimizations (LLVM 12+)

Towards OpenMP-aware compiler optimizations

e LLVM “knows” about OpenMP APl and (internal) runtime calls, incl.
their potential effects (e.g., they won't throw exceptions)

e LLVM performs “high-level” optimizations, e.g., parallel region
merging, and various GPU-specific optimizations late

e Some LLVM/Clang “optimizations” remain, but we are in the process
of removing them: simple frontend, smart middle-end

interprocedural
optimizations
for host & device

run with -02 and
-03 since LLVM 11
(-01 with LLVM 13)

OpenMP-Aware Optimizations
Automatic SPMDzation + shared memory usage (LLVM 13+)

#pragma omp target teams
SPMDzation - “CUDA”-1like execution mode

i
double team_local memory[M];
team_main_thread only();
#pragma omp parallel
every_ thread(team_local memory);
li #pragma omp target teams
#pragma omp parallel
- Shared memory usage for scratchpads it
double team_local memory[M];

." #pragma omp allocate(team_Local_memory) \

{ allocator(omp_cgroup _mem_alloc)
#pragma omp masked

> Automatic guarding and synchronization ;emmmalmjhramfmﬂy(L

. pragma omp barrier

o every_thread(team_local _memory);

BLLVM 12 % No OpenMP Optimization 77~ heap-2-stack

¥ heap-2-stack&shared (=h2s?) /|l h2s? + RTCspec B8 h2s? + RTCspec + CSM
B h2s? + RTCspec + SPMDzation I CUDA (LLVM Dev) #8 CUDA (NVCC)
LLVM 214 214 LLVM
) Dev ¥ © Dev ¥
£ ~ . l & ~N 15 4
g — 1.69 1.69 g E 13.21 13.35
= 2288 77 1,53 i
g O : a= 10
%‘ 2 q base b | % i /
25 1t % © %
- Ul [/
= Tz. 8 ~1.2x: si.mp%iﬁed = -?: 5 /
& . globalization & /
gxamens 7/ base QoM /
" 7l o | — Al

(a) Performance of XSBench relative to LLVM 12 (base). (b) Performance of RSBench relative to LLVM 12 (base).

ELLVM 12 #% No OpenMP Optimization 77 heap-2-stack

heap-2-stack&shared (=h2s?) /Il 'h2s® + RTCspec B h2s? + RTCspec + CSM
Bl h2s? + RTCspec + SPMDzation Bl CUDA (LLVM Dev) 88 CUDA (NVCC()
LLVM 323 3298 , LLVM |
8 T 5] B Dev P
= 30 - :;é & v
— — 2.26
Es E=
B « < = o2l
23w 55
) -— '76 -
£ g £ g
< = o 10.84 R E 1} base =~ 0000
z = z =
@) @)
base (57 0.92 0.07 0.08
0 _Wwwm 0 SEEIIIEEER LS SSSS SIS,

(c) Performance of SU3Bench relative to LLVM 12 (base).

(d) Performance of miniQMC relative to LLVM 12 (base)

P

|

v

OpenMP-Optimization
Remarks & Assumptions

example.cpp:41:24: remark: Found thread data sharing on the
GPU. Expect degraded performance Que to data 5
globalization. [OMP112] [-Rpass-missed=openmp-op

double device_function(float Arg) {

example.cpp:42:3: remark: Moving globalized variable to the
stack. [OMP110] [-Rpass=openmp-opt]

double Lcl;

A

1) OpenMP-0pt emits remarks (above)
2) The web provides explanations (right)

3) Users add OpenMP assumptions, e.q.,
#pragma omp assume ext_spmd_amenable

https://openmp.llvm.org/remarks/OptimizationRemarks.html

Moving globalized variable to the stack. [OMP110]

This optimization remark indicates that a

globalized variable was moved back to thread-local stack memory
on the device. This occurs when the (o]

ptimization pass can determine that a globalized variable cannot
d globalization was ultimately unnecessary. Using stack memory is
the best-case scenario for data globalization as the variable can now be stored in fast register files on the
device. This optimization requires full visibility of each variable.

Globalization typically occurs when a pointer to a thread-local variable escapes the current scope. The

assume that the pointer could be shared between multiple threads

. This is expensive on target offloading devices that do not allow threads
to share data by default. Instead, this data must be moved to memory that can be shared, such as shared or
global memory. This optimization moves the data back from shared or global memory to thread-local stack
memory if the data is not actually shared between the threads.

Examples

A trivial example of globalization occurring can be seen with this example. The compiler sees that a pointer

Pe and must globalize it even though it is not actually
necessary. Fortunately, this optimization can undo this by looking at its usage.
void use(int *x) { }
void foo() {
int x;
use (6x) ;

int main()
#pragna omp target parallel
foo();

$ clang++ -fopenmp -fopenmp- targets-nuptxes ©omp110.cpp -01 -Rpass=openmp-opt
Omp116.cpp:6:7: remark: Moving ized variable to the 0MP110]

A less trivial example can be seen usin,
Operators cause pointers to the com
femoved once the usage is visible.

g C++'s complex numbers. In this case the overloaded arithmetic
plex numbers to escape the current scope, but they can again be

#include

R e e e e

Visit openmp.livm.org for more!

—— T —

https://openmp.llvm.org/remarks/OptimizationRemarks.html

-

¥

§ 45

N

= =i RS

Near Future Development

% Finishing last OpenMP 5.0 features (right)

% Continue to work on OpenMP 5.1 features

% Harden the AMD GPU offloading (LLVM 13+)

% Enable the new GPU device runtime by default
o “SIMD" support for the GPU
o Memory and runtime overhead only for used features
o Better diagnostics, assertions, etc.

% Proper linking support for device code
o Including Link-Time-Optimizations (LTO)!

* Just-In-Time (JIT) compilation for device code

% Many other cool things &, get involved!

OpenMP 5.0 Implementation Details

I'M INTERESTED §

Cool, count me in, what next? _

1)
2)
3)

4)
5)

Get LLVM/Clang 13 with offloading support ~
clang++ -fopenmp -fopenmp-targets=nvptx64 ...

Check out https://openmp.livm.orq (FAQ!) and CONTINUE |
https://clanqg.llvm.org/docs/OpenMP Support.html THANKS 2 awcmem.c

Subscribe to https://llvm-gpu-news.github.io/
Talk to us! Join our meetings, report bugs, request cool features,
ask questions, ... openmp-dev@llvm.lists.org

¥ or even a recent development version from github!
= available on *all the cool* HPC machines

https://openmp.llvm.org/docs
https://clang.llvm.org/docs/OpenMPSupport.html
https://llvm-gpu-news.github.io/
mailto:openmp-dev@llvm.lists.org

AMA
(Ask Me Anything)

The End

®
Johannee Doerfé ot

O p en M P | N L LV M Jbéahh“‘/oe"/ ert@gmail.com

Weekly Meeting: https:/bit.ly/2Zqt49v /4/’3 Ohhe /V"-t""ha/ (ab

@

OpenMP in LLVM

Weekly Meeting: https://bit.ly/2Zqt49v

OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

OpenMP in LLVM

Weekly Meeting: https://bit.ly/2Zqt49v

Clang ~ OpenMP
OpenMP runtimes

Parser = | |
. libomp.so (classic, host) :

OpenMP - - g
Sema . libomptarget + plugins
(offloading, host)
OpenMP -
CodeGen . libomptarget-nvptx
: (offloading, device)

OpenMP in LLVM

Weekly Meeting: https://bit.ly/2Zqt49v

Clang ° ~ OpenMP

OpenMP | runtimes
Parser © » . |
' . libomp.so (classic, host) :
OpenMP : - o
Sema © . libomptarget + plugins |
n ~ (offloading, host)
OpenMP | .
CodeGen - libomptarget-nvptx

(offloading, device)

OpenMP in LLVM

Weekly Meeting: https://bit.ly/2Zqt49v

Clang > | OpenMPIRBuilder OpenMP
OpenMP frontend-independant ' runtimes

Parser © | OpenMP LLVM-IR generation - .
. . libomp.so (classic, host) :

OpenMP favor simple and expressive

Sema | LLVM-IR Iibomptarg-et+ plugins
no (offloading, host)
OpenMP n reusable for non-OpenMP : i
CodeGen parallelism IDOmpEtargetinypix
: (offloading, device)

OpenMP in LLVM

Weekly Meeting: https://bit.ly/2Zqt49v

Clang > | OpenMPIRBuilder

OpenMP frontend-independant
Parser © || OpenMP LLVM-IR generation

OpenMP favor simple and expressive
Sema . LLVM-IR

OpenMP : reusable for non-OpenMP

CodeGen parallelism

OpenMPOpt

interprocedural
optimization pass

contains host & device
optimizations

run with -02 and -03
since LLVM 11

OpenMP
runtimes

libomp.so (classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

