OpenMP

The OpenMP" Common Core:

A hands on exploration

Barbara Chapman Alice Koniges and Helen He
Stony Brook University LBL
Barbara.chapman@stonybrook.edu AEKoniges@]lbl.gov
Larry Meadows and Tim Mattson
Intel

Lawrence.f.meadows@intel.com

Many others have contributed to these slides. The first version of the
“Common Core” slides were created by Tim Mattson, Intel Corp.

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

About The Presenters

« Barbara Chapman is a Professor at Stony Brook University.
She has been involved with OpenMP since 2000.

» Alice Koniges is a computer scientist and physicist at Berkeley
Lab’s Computational Research Division. She represents
Berkeley on the OpenMP and MPI standards committees.

Preliminaries: Part 1

e Disclosures

— The views expressed in this tutorial are those of the
people delivering the tutorial.
— We are not speaking for our employers.
— We are not speaking for the OpenMP ARB

* We take these tutorials VERY seriously:

— Help us improve ... tell us how you would make this
tutorial better.

Preliminaries: Part 2

 Our plan for the day .. Active learning!
— We will mix short lectures with short exercises.
— You will use your laptop to connect to a multiprocessor
server.
* Please follow these simple rules

— Do the exercises that we assign and then change things
around and experiment.
— Embrace active learning!

—Don’t cheat: Do Not look at the solutions before you
complete an exercise ... even if you get really frustrated.

Outline

E5) « Introduction to OpenMP
 Creating Threads
« Synchronization
 Parallel Loops
« Data environment
* Memory model

OpenMP’ overview:

CSOMP FLUSH fpragma omp critical

CSOMP THREADPRIVATE (/ABC/) CALI. QOMP SET NIUM THREADS (10)

~sof OpenMP: An API for Writing Multithreaded
Applications

CSOl =A set of compiler directives and library routines for
parallel application programmers
CS =Greatly simplifies writing multi-threaded (MT) programs fp

in Fortran, C and C++

C . . . N
=Standardizes established SMP practice + vectorization and
40 heterogeneous device programming
C$OMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX)

Nthrds = OMP GET NUM PROCS () omp set lock (lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

The growth of complexity in OpenMP

« OpenMP started out in 1997 as a simple interface for the application
programmers more versed in their area of science than computer science.

« The complexity has grown considerably over the years!

?2

2008 2010 2012 2014

Page counts (not counting front matter, appendices or index) for versions of OpenMP
350
Fort
- 300 8 ortran spec
e ® o+ spec
o 250
S A Merged C/C++ and Fortran spec
Z 200
S
& 150 2.5
©]
=
< 100 20 2
1.0 ‘! °
50 @.0. 8 &
0
1996 1998 2000 2002 2004 2006
year

2016

The complexity of the full spec is overwhelming, so we focus on the 16 constructs most OpenMP
programmers restrict themselves to ... the so called “OpenMP Common Core”

Resources
http://lwww.openmp.org

* We can only give an overview today
— We won'’t cover all features

e Lots of information available at ARB’s website

— Specifications, technical reports, summary cards for downloading
— Tutorials and publications; links to other tutorials

 Tutorials also at:
— Supercomputing conferences
— Annual OpenMPCon, IWOMP workshop
— Some user sites, e.g. NERSC

OpenMP

Enabling HPC since 1997

The Call for Papers in now open for unpublished
- technical papers detailing innovative, original

13th International Workshop on OpenMP e e ot

Wang Center, Stony Brook Univ, NY, USA

Where Does OpenMP Run?

Core Core Core Core
Supported (since OpenMP 4.0) §Cg't| el el el e

with target, teams, distribute, —

|)
Goormc| ~-¢ Lmpd Lmnd - [mod [and GDDR M|
and other constructs =N — ‘J =

21 2 21 21 ‘

310) 3J0) 210D 310)

Jar | |aLr |
.

Target Device: Intel® Xeon Phi™ coprocessor

Compiler variables

OpenMP Runtime library —
OS/system support for shared memory and threading

DRAMI/F
dNNY¥A

Shared Address Space | Shared Address Space Shared Address Space

=)
el
>
=
3

Shared Address Space

Host

d/1AY¥A

dNAV¥Aa

Target Device: GPU

How Does OpenMP Work?

« Teams of OpenMP threads are created to perform the
computation in a code
— Work is divided among the threads, which run on the different cores
— The threads collaborate by sharing variables
— Threads synchronize to order accesses and prevent data corruption
— Structured programming is encouraged to reduce likelihood of bugs

* Most Fortran/C/C++ compilers implement OpenMP
— Use compiler “flag”, sometimes a specific optimization level

 Alternatives:
- MPI

— POSIX thread library is lower level
— Automatic parallelization is higher level (user does nothing)
a But usually successful on simple codes only 10

Programming in Pthreads vs. OpenMP

#include <pthread.h>
#define DEFAULT_NUM_THREADS 4

/* encapsulate multiple args to a thread */
typedef struct args {

int id; /* this thread's number */

} args_t;

/* function that is run inside each thread */
void *do_hello_world(void *arg)

{
args_t *ap = (args_t *) arg; /* unpack incoming args */
printf("Hello from thread %d\n", ap->id); /* ACTUAL WORK */
return NULL;
} int main(int argc, char *argv[]) {
intmain(int argc, char *argv[]) #pPagma Omp parallel
{
int i, num_threads = DEFAULT_NUM_THREADS; {
pthread_t *thread_pool; int ID = omp _get thread num();

args_t *thread_args;

printf("hello from thread %d\n", ID);

if (argc > 1) {

num_threads = atoi(argv[1]); }
if (num_threads < 0) { .
num_threads = DEFAULT NUM_THREADS; return 9;

}
) }
thread_pool = (pthread_t *) malloc(num_threads *
sizeof(*thread_pool));
thread_args = (args_t *) malloc(num_threads *
sizeof(*thread_args));
/* create and run threads: pass id of thread to each */
for (i = @; i < num_threads; i += 1) {
thread_args[i].id = i;
pthread_create(&thread_pool[i], NULL, do_hello_world,
(void *) &thread_args[i]);
}* wait for all threads to finish */
for (i = @; i < num_threads; i += 1) {
pthread_join(thread_pool[i], NULL);
b
free(thread_args);
free(thread_pool);

return 0; 1 1 1

What Does the User Have to Do?

« Starting point is most often MPI or sequential program
code

* Application developer must decide how the work can be
divided up among multiple threads
— ldentify parallelism and needed synchronization
— Getting this right is the user’s responsibility!
— Insert OpenMP constructs that represent the strategy

« Getting good performance requires an understanding of
implications of chosen strategy
— Translation introduces overheads
— Data access pattern might affect performance

« Sometimes, non-trivial rewriting of code is needed to
accomplish desired results

User makes strategic decisions; compiler figures out details

12

OpenMP Usage

sequential Sequential
ComPIL—¥ Program

OpenMP Fortran/C/C++

Source compiler
Om Parallel
compiler Prog ram

Info on compiler used in training

Compiler Name C\(;:;s[;:)l;r OpenMP version OpenMP flag C/C++/Fortran compiler
GNU Compiler Collection (gcc)
[cori, bluewaters, Edison, stampede 2] el = -ilopEmg gec, g+, gfortran
Intel Compilers .. .
[cori, bluewaters, Edison, stampede 2] 17.0.X 4.5 -qopenmp ice, icpe, ifort

13

OpenMP basic definitions: Basic Solution stack

)

)

2

= Application

x Compiler variables
% OpenMP Runtime library

-

% OS/system support for shared memory and threading
%)

=

T

Shared Address Space

OpenMP basic syntax

* Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]...]
— Example
#pragma omp parallel private(x)

 Function prototypes and types in the file:
#include <omp.h>

* Most OpenMP* constructs apply to a “structured block”.

— Structured block: a block of one or more statements with
one point of entry at the top and one point of exit at the
bottom.

- It's OK to have an exit() within the structured block.

15

Exercise, Part A: Hello world
Verify that your environment works

* Write a program that prints “hello world”.

#include<stdio.h>
int main()

{

printf(“ hello ™);
printf(“ world \n”);

16

Exercise, Part B: Hello world
Verify that your OpenMP environment works

* Write a multithreaded program that prints “hello world”.

#include <omp.h> Switches for compiling and linking
#include <stdio.h>
int main() gcc -fopenmp Gnu (Linux, OSX)
{ pgcc -mp pgi PGI (Linux)
#pragma omp parallel]]
, icl /Qopenmp Intel (windows)
icc —-fopenmp Intel (Linux, OSX)

printf(“ hello ™);
printf(“ world \n”);

j
}

17

Solution
A multi-threaded “Hello world” program

» Write a multithreaded program where each thread prints “hello world”.

#include <omp.h> €— OpenMP include file

#include <stdio.h> I

int main

{ d _ Sample Output:
Parallel region with

#pragma omp parallel &~ | default number of threads | hello hello world

{ world
hello hello world

printf(“ hello ™); world
printf(“ world \n”);

}
i End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

18

Outline

* Introduction to OpenMP
=) . Creating Threads
« Synchronization
 Parallel Loops
» Data environment
* Memory model
* |rregular Parallelism and tasks
* Recap

* Beyond the common core:
— Worksharing revisited

— Synchronization: More than you ever wanted to know
— Thread private data

19

OpenMP programming model:

Fork-Join Parallelism:

¢ Master thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals are met,
l.e., the sequential program evolves into a parallel program.

Parallel Regions

A Nested
Parallel

Master / |
Thread
in red _,‘
~ ‘7 b /’, \
\ // \\\ ////
N

region

Sequential Parts

20

Thread creation: Parallel regions

* You create threads in OpenMP* with the parallel construct.
* For example, To create a 4 thread Parallel region:

double A[1000]; Runtime function to
Each thread omp_set num_threads(4); < request a certain
executes a #pragma omp parallel number of threads
code within int ID = omp_get _thread _num();
the pooh(ID,A);
structured } \ Runtime function
block

returning a thread ID

e Each thread calls pooh(ID,A) for ID = 0 to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 21

Thread creation: Parallel regions example

» Each thread executes the
same code redundantly.

double A[1000];
omp_set _num_threads(4);

#pragma omp parallel

{

| int ID = omp_get thread _num();
double A[1000]; pooh(ID, A);

}

omp_set_num_threads(4) printf(“all done\n”);

A single
copy of Ais
shared
between all

threads.

__» pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all m Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread creation: How many threads did
you actually get?

* You create a team threads in OpenMP* with the parallel construct.
* You can request a number of threads with omp_set_num_threads()

« But is the number of threads requested the number you actually get?

- NO! An implementation can silently decide to give you a team with fewer threads.
— Once a team of threads is established ... the system will not reduce the size of the team.

Each thread double A[1000]; Runtime function to
executes a omp_set_num_threads(4); < request a certain
#pragma omp parallel number of threads
copy of the {
COd?hV:thm int ID = omp_get _thread _num();
structured int nthrds = omp_get_num_threads();
block pooh(ID,A); . .
} \ Runtime function to
return actual
e Each thread calls pooh(ID,A) for ID = 0 to nthrds—-1 | numbper of threads
In the team

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Internal control variables & the number of threads

* There are a few ways to control the number of threads.
— omp_set_num_threads(4)

 What does omp_set_num_threads() actually do?

- It resets an “internal control variable” the system queries to select the
default number of threads to request on subsequent parallel constructs.

* |s there an easier way to change this internal control variable ...
perhaps one that doesn’t require re-compilation? Yes.

— When an OpenMP program starts up, it queries an environment variable
OMP_NUM_THREADS and sets the appropriate internal control variable
to the value of OMP_NUM_ THREADS

* For example, to set the initial, default number of threads to

request in OpenMP from my apple laptop
> export OMP_NUM_THREADS=12

24

Performance Tips

Experiment to find the best number of threads on your system
Put as much code as possible inside parallel regions

— Amdahl’s law: If 1/s of the program is sequential, then you cannot
ever get a speedup better than s

— So if 1% of a program is serial, speedup is limited to 100, no matter
how many processors it is computed on

Have large parallel regions

— Minimize overheads: starting and stopping threads, executing
barriers, moving data into cache

— Directives can be “orphaned”; procedure calls inside regions are fine
Run-time routines are your friend

— Usually very efficient and allow maximum control over thread behavior
Barriers are expensive

— With large numbers of threads, they can be slow

— Depends in part on HW and on implementation quality

— Some threads might have to wait a long time if load not balanced

29

An interesting problem to play with

Numerical integration

F(x) = 4.0/(1+x2)

4.0 T~

N
o
T

0.0

1.0

Mathematically, we know that:

1
4.0
0

We can approximate the integral as a
sum of rectangles:

N

| E F(x)AX = TT

i=0

Where each rectangle has width Ax and
height F(x;) at the middle of interval i.

26

Serial Pl program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

See OMP_exercises/pi.c

Serial Pl program

#include <omp.h>

static long num_steps = 100000;
double step;

int main ()

int i; double x, pi, sum = 0.0, tdata;

{

i

See OMP_exercises/pi.c

step = 1.0/(double) num_steps;

double tdata = omp_get_wtime();
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

The library routine
get omp wtime() 1s
used to find the
elapsed “wall time”
for blocks of code

tdata = omp_get wtime() - tdata;
printf(“ pi = %f in %f secs\n”,pi, tdata);

28

Exercise: the parallel Pi program

» Create a parallel version of the pi program using a parallel

construct:
#pragma omp parallel.

« Pay close attention to shared versus private variables.

 |[n addition to a parallel construct, you will need the runtime

library routines

Number of threads in the team

—int omp_get_num_threads();/

—int omp_get thread num()'g
—double omp_get _wtime()
—omp_set_num_threads()

pd

Request a number of
threads in the team

Thread ID or rank

Time in Seconds since a
fixed point in the past

29

Hints: the Parallel Pi program

« Use a parallel construct:
#pragma omp parallel

* The challenge is to:

— divide loop iterations between threads (use the thread ID and the
number of threads).

— Create an accumulator for each thread to hold partial sums that you
can later combine to generate the global sum.

* In addition to a parallel construct, you will need the runtime
library routines

— intomp_set_num_threads();
— intomp_get num_threads();
— int omp_get thread num();
— double omp_get_wtime();

30

Results*

. Orlglnal Serial p| program with 100000000 steps ran |n 1.83 seconds.
. Example: A simple Parallel pi program

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]; threads 1st
step = 1.0/(double) num_steps; SPMD#*
omp_set num_threads(NUM_THREADS);

#pragma omp paraliel
{

1.86
1.03
1.08
0.97

inti, id,nthrds;

double x;

id =omp_get_thread num();

nthrds = omp_get num_threads();

if (id —0) nthreads =nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

X = (i+0.5)*step;
sumlid] +=4.0/(1.0+x*X);

AW N

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i] * step;

*SPMD: Single Program Multiple Data

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 31

Why such poor scaling? False sharing

« If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads

... This is called “false sharing”.

HW thrd. O HW thrd. 1 HW thrd. 2 HW thrd. 3

L‘_‘—L ‘l L1 $ lines | LLLL \
1] I] I
S 1 S 2 S 3 S 0 S 1 S 3
== — w —

Shared last level cache and connection to I/O and DRAM

* If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines ... Results in poor scalability.

» Solution: Pad arrays so elements you use are on distinct cache lines.
32

Example: Eliminate false sharing by padding the sum array

#include <omp.h>
static long num_steps = 100000; double step;

#define PAD 8 /[assume 64 byte L1 cache line size

#define NUM_THREADS 2
void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

AN

Pad the array so
each sum value is
in a different
cache line

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

X = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum|i][0] * step;

33

Results™: pi program padded accumulator
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000; double step;

#idefine PAD 8 /I assume 64 byte L1 cache line size
#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]PAD};

step = 1.0/(double) num_steps;
omp_set num_threads(NUM_THREADS);
#pragma omp parallel

{

inti, id,nthrds;

double x;

id=omp_get _thread num();

nthrds =omp_get num_threads();

if id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
X = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*X);

}

for(i=0, pi=0.0;i<nthreads:i++)pi += Sum[[0] * step:
}

' Example: eliminate False sharing by padding the sum array

threads 15t 15t
SPMD SPMD
padded
1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

34

Outline

* Introduction to OpenMP

 Creating Threads

* Quantifying Performance and Amdahl’s law
=) « Synchronization

 Parallel Loops

» Data environment

* Memory model

* |rregular Parallelism and tasks

* Recap

* Beyond the common core:
— Worksharing revisited
— Synchronization: More than you ever wanted to know
— Threadprivate data

35

Synchronization

 High level synchronization included in the common core
(the full OpenMP specification has MANY more):

—critical
— barrier

Synchronization is used to
iImpose order constraints and
to protect access to shared
data

36

Synchronization: critical

« Mutual exclusion: Only one thread at a time can enter a

critical region.

Threads wait
their turn — only
one at a time
calls consume()

float res;
#pragma omp parallel
{ floatB; inti, id, nthrds;
id = omp_get _thread _num();
nthrds = omp_get num_threads();
for(i=id;i<niters;i+=nthrds){
B = big_job(i);

#pragma omp critical
res += consume (B);

37

Synchronization: barrier

« Barrier: a point in a program all threads much reach before any threads are
allowed to proceed.

 Itis a “stand alone” pragma meaning it is not associated with user code ... it
Is an executable statement.

double Arr[8], Brr[8]; int numthrds;
omp_set_num_threads(8)
#pragma omp parallel
{ intid, nthrds;
id = omp_get _thread _num();

nthrds = omp_get num_threads();

Threads if (id==0) numthrds = nthrds;
wait until all : . .
threads hit Arr[id] = big_ugly_calc(id, nthrds);
the barrier. #pragma omp barrier
Then they I .

Brrlid] = lly Di d ly(id, nthrds, A);
can go on. } rr[l] rea y— Ig—an —ug y(l , NINras,)a

38

Exercise

* In your first Pi program, you probably used an array to create
space for each thread to store its partial sum.

* |f array elements happen to share a cache line, this leads to
false sharing.

— Non-shared data in the same cache line so each update invalidates the
cache line ... in essence “sloshing independent data” back and forth
between threads.

* Modify your “pi program” to avoid false sharing due to the
partial sum array.

39

Pi program with false sharing®
.m-mOrlglnaI Serial p| program with 100000000 steps ran in in 1.83 seconds.

Example: A simple Parallel pi program
_ Recall that promoting sum to an
#include <omp.h>)
static long num_steps = 100000; double step; array made the codlng casy, but led
#define NUM_THREADS 2 .
void main (to false sharing and poor
{ int i, nthreads; double pi, sum[NUM_THREADS]; performance.
step = 1.0/(double) num_steps;
omp_set num_threads(NUM_THREADS);
#pragma omp paraliel
{
inti, id,nthrds;
double x;
d =omp _get thread num();
nthrds = om num_threads(); threads Ist
if (id —0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) { SPMD
X = (i+0.5)*step; 1 1.86
sum[id] +=4.0/(1.0+x*X); .
} } 2 1.03
for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i] * step; 3 1.08
) VARSI .
4 0.97

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 40

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

Create a scalar local

{ o | - to each thread to
int i, id, nthrds; double x, sum; accumulate partial

id = omp_get_thread_num();

sums.
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { No array, so
X = (i+0.5)*step; no fglse
sum += 4.0/(1.0+x*x); sharing.
}
#pragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; &= region ... so you must sum itin here. Must
} protect summation into pi in a critical region so
} updates don’t conflict

41

Results*: pi program critical section
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Exam ple: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{
inti, id, nthrds; double x, sum; st st
id = omp_get_thread_num(); threads l l SI_)MD
nthrds = omp_get_num_threads(); SPMD SPMD critical
if (id == 0) nthreads = nthrds; padded
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)"step; 1 1.86 1.86 1.87
sum += 4.0/(1.0+x*x);
} 2 1.03 1.01 1.00
#pragma omp critical
pi += sum * step; 3 1.08 0.69 0.68
i 4 0.97 0.53 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

42

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ prag PP Be careful where you

int i, id,nthrds; double x; put a critical section

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id ==0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
X = (i+0.5)*step;
#pragma omp critical €&
pi += 4.0/(1.0+x*x);

What would happen if
you put the critical
section inside the
loop?

pi *= step;

43

Outline

* Introduction to OpenMP
 Creating Threads
* Quantifying Performance and Amdahl’s law
e Synchronization
=) « Parallel Loops
» Data environment
* Memory model
* |rregular Parallelism and tasks
* Recap

* Beyond the common core:
— Worksharing revisited
— Synchronization: More than you ever wanted to know
— Threadprivate data

44

The loop worksharing constructs

* The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel Loop construct name:
{ . |
#pragma omp for C/C++: for

for (N A *Fortran: do

EAT_STUFF(I);
}

The loop control index | is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the
parallel loop before any proceed
past the end of the loop

45

Loop worksharing constructs
A motivating example

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, 1, Nthrds, istart, iend;

id = omp_get_thread _num();

Nthrds = omp_get num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { ali] = a[i] + bl[i];}

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) { a[i] = ali] + bl[i];}

Loop worksharing constructs:
The schedule clause

« The schedule clause affects how loop iterations are mapped onto threads

— schedule(static [,chunk])

— Deal-out blocks of iterations of size “chunk” to each thread.
— schedule(dynamic[,chunk])
— Each thread grabs “chunk” iterations off a queue until all iterations have

been handled.

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

P

Least work at
runtime :

scheduling done
at compile-time

DYNAMIC

Unpredictable, highly
variable work per
iteration

~

Most work at
runtime :

complex
scheduling logic
used at run-time

Combined parallel/worksharing construct

* OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res|MAX]; int1; double resf]MAX]; int i;
#pragma omp parallel #pragma omp parallel for
d for (i=0;i< MAX; i++) {

#pragma omp for res[i] = huge();
for (1=0;1< MAX; 1++) { !

res[i] = huge();
h

} . /‘
‘ These are equivalent I

48

Working with loops

« Basic approach

— Find compute intensive loops

— Make the loop iterations independent ... So they can safely execute in
any order without loop-carried dependencies

— Place the appropriate OpenMP directive and test

Note: loop index

int i, j, AIMAX]; 17

1s private by

i=5: default

for (1=0;1< MAX; 1++) {

J+=2
Ali] = bigN
§

inti, AIMAX];
Nfgﬂ)ragma omp parallel for
r (1=0;1< MAX; 1++) {

intj =5+ 2*@+1);

Remove loop
carried
dependence

Al1] = big());
h

49

Reduction

- How do we handle this case?

double ave=0.0, A[MAX]; 1nti;
for (i=0;i< MAX; i++) {
ave + = Ali];

h
ave = ave/MAX;

« We are combining values into a single accumulation variable (ave) ...
there is a true dependence between loop iterations that can’t be trivially
removed

« This is a very common situation ... it is called a “reduction”.

« Support for reduction operations is included in most parallel programming
environments.

Reduction

* OpenMP reduction clause:
reduction (op : list)

* Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized depending
on the “op” (e.g. 0 for “+").
— Updates occur on the local copy.

— Local copies are reduced into a single value and combined with
the original global value.

* The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, AIMAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (1=0;1< MAX; 1++) {
ave + =A[1];

h
ave = ave/MAX;

51

OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
« Initial values are the ones that make sense mathematically.

Operator | Initial value
+ 0
* 1 Fortran Only
- 0 Operator |Initial value
min Largest pos. number "AND. true.
max Most neg. number OR. false.
.NEQV. false.
C/C++ only
0 t Initial | JEOR. 0
perator | initia (\)/a ue IOR. 0
& - J1AND. All bits on
| 0 .EQV. true.
A 0
&& 1
| 0

92

Exercise: Pi with loops

« Go back to the serial pi program and parallelize it with a loop
construct

* Your goal is to minimize the number of changes made to the
serial program.

#pragma omp parallel

#pragma omp for

#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical

int omp_get_num_threads();

int omp_get thread_num();

double omp_get wtime();

93

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;
void main ()
{ Int I; double X, pl, sum = OO’ Create a team of threads ...
step = 10/(double) num_ steps; without a parallel construct, you'll
- never have more than one thread

#pragma omp parallel <

{

double x; <€

Create a scalar local to each thread to hold
value of x at the center of each interval

#pragma omp for reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

Break up loop iterations

sum = sum + 4_0/(1 O0+Xx*X ’ and assign them to

pi = step * sum;

threads ... setting up a
reduction into sum. Note
... the loop index is local to
a thread by default.

54

Results*: pi with a loop and a reduction
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Example: Pi with a| threads]st]st SPMD | PILoop
SPMD SPMD critical

#include <omp.h> padded

static long num_steps = 1000

void main () 1 1.86 1.86 1.87 1.91

{ inti double x, pi, s 2 1.03 1.01 1.00 1.02
step = 1.0/(double) num_9
#pragma omp parallel 3 1.08 0.69 0.68 0.80
{ 4 0.97 0.53 0.53 0.68

double x;
#pragma omp for reduction(+:sum)
for (i=0;i< num_steps; i++)
X = (i1+0.5)*step;
sum = sum + 4.0/(1.0+x™x);

}

pi = step * sum;

}
}

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

55

The nowait clause

» Barriers are really expensive. You need to understand when
they are implied and how to skip them when its safe to do so.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get thread num();

A[Id] - blg—Ca_|C1 (Id); implicit barrier at the end of a for
#pragma omp barrier worksharing construct
#pragma omp for

for(i=0:i<N:i++){C[i]=big i A

_calc3(i,A);}

#pragma omp for nowait
for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

Alid] = big_calc4(id); ™~

J implici ' implicit barrier
~——____| implicit barrier at the end no imp :
of a parallel region due to nowait

o6

Limitations of Parallel For/ Do

#pragma omp parallel

{
while (my pointer != NULL) {
do_independent_work(my pointer);
my _pointer = my_pointer->next;
} // End of while loop
}

To use a for or do construct, loops must be countable.

To parallelize this loop, it is necessary to first count the number of
iterations and then rewrite it as a for loop.

Or we can use tasks. More on this later...

97

Performance Tips

* |s there enough work to amortize overheads?
— May not be worthwhile for very small loops (if clause can control this)

— Might be overcome by choosing different loop, rewriting loop nest or
collapsing loop nest

» Best choice of schedule might change with system, problem
size
— Experimentation may be needed
* Minimize synchronization
— Use nowait where possible
* Locality
— Most large systems are NUMA

— Be prepared to modify your loop nests
— Change loop order to get better cache behavior

* |f performance is bad, look for false sharing
— We talk about this in part 2 of the tutorial
— Ocecurs frequently, performance degradation can be catastrophic 5g

Outline

* Introduction to OpenMP
 Creating Threads
* Quantifying Performance and Amdahl’s law
e Synchronization
 Parallel Loops
E=) « Data environment
* Memory model
* |rregular Parallelism and tasks
* Recap

* Beyond the common core:
— Worksharing revisited
— Synchronization: More than you ever wanted to know
— Thread private data

99

OpenMP Memory Model

 All threads access the same, globally
shared memory

« Data can be shared or private
— Shared — only one instance of data

{ivate
o Threads can access data
simultaneously

Shared o Changes are visible to all threads

e Mgmory — Not necessarily immediately
— Private - Each thread has copy of data
pri@

N

private

o No other thread can access it
o Changes only visible to the thread
owning the data
* OpenMP has relaxed-consistency
shared memory model
— Threads may have a temporary view of

shared memory that is not consistent with
that of other threads

private

— These temporary views are made consistent

at certain places in code 50

Data environment:
Default storage attributes

» Shared memory programming model:
— Most variables are shared by default

* Global variables are SHARED among threads
— Fortran: COMMON blocks, SAVE variables, MODULE variables
— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

» But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called
from parallel regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.

61

Data sharing: Examples

double A[10]; extern double A[10];
int main() { void work(int *index) {
int index[10]; double temp[10];
#pragma omp parallel static int count;
work(index);
printf(“%d\n”, index[0]); }
}

A, index, count

A, index and count are
shared by all threads.

temp temp temp

temp is local to each |
thread |
A, index, count

Data sharing:
Changing storage attributes

* One can selectively change storage attributes for constructs
USing the fOIIOWing clauses® (note: list is a comma-separated list of variables)

- Sh_ared(I_ISt) These clauses apply to
—private(list) the OpenMP construct

—firstprivate(list) NOT to the entire region.

* These can be used on parallel and for constructs ... other
than shared which can only be used on a parallel construct

» Force the programmer to explicitly define storage attributes

—default (none) default() can be used on

parallel constructs

63

Data sharing: Private clause

 private(var) creates a new local copy of var for each thread.
— The value of the private copies is uninitialized
— The value of the original variable is unchanged after the region

void wrong() {
int tmp = 0;
#pragma omp parallel for private(tmp)

for (intj = 0; j < 1000; ++j) tmp was not
— Ao ‘_ — . ngn .
tmp +=; initialized

When you need printf(*%d\n”, tmp);
to reference the }
variable tmp that

exists prior to the ‘ tmp is 0 here I
construct, we call
it the original
variable.

64

Data sharing: Private clause
When is the original variable valid?

* The original variable’s value is unspecified if it is referenced

outside of the construct
— Implementations may reference the original variable or a copy a
dangerous programming practice!
— For example, consider what would happen if the compiler inlined

work()?
int tmp;
void danger() { extern int tmp;
tmp = 0; void work() {
#pragma omp parallel private(tmp) tmp = 5;

work(); }
printf(“%d\n”,{np);

} unspecified which
‘ tmp has unspecified value I copy of tmp

69

Firstprivate clause

 Variables initialized from a shared variable
« C++ objects are copy-constructed

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i=0; i <= MAX; i++) {

if ((i%2)==0) incr++;

A[l] = incr;
) T |

Each thread gets its own copy of
incr with an initial value of 0

Data sharing:
A data environment test

» Consider this example of PRIVATE and FIRSTPRIVATE

variables: A=1,B=1,C =1
#pragma omp parallel private(B) firstprivate(C)

» Are A,B,C private to each thread or shared inside the parallel region?
« What are their initial values inside and values after the parallel region?

Inside this parallel region ...
e “A’ is shared by all threads; equals 1
e “B” and “C” are private to each thread.
— B’s initial value is undefined
— C’s initial value equals 1
Following the parallel region ...
e B and C revert to their original values of 1
e Ais either 1 or the value it was set to inside the parallel region

67

Data sharing: Default clause

» default(none). Forces you to define the storage attributes for
variables that appear inside the static extent of the construct ... if you fail

the compiler will complain. Good programming practice!

* You can put the default clause on parallel and parallel + workshare
constructs.

#include <omp.h>

int main()

{
int1,j=5; double x=1.0, y=42.0;

— #pragma omp parallel for default(none) reduction(*:x)

for (1=0;1<N;1++){

The static extent
1s the code in the
compilation unit

that contains the == for(j :Oa J<39 .]++) . The Compi]er would
construct. x+= foobar(, j, y); complain about j and y,
} which is important since

printf(*‘ x is %f\n”,(float)x); you donsltlzzggtj o be

The full OpenMP specification has other versions of the default clause, but they are not
used very often so we skip them in the common core

68

Performance and Correctness Tips

* There is one version of shared data
— Keeping data shared reduces overall memory consumption

 Private data is stored locally, so use of private variables can
increase efficiency
— Avoids false sharing
— May make it easier to parallelize loops
— But private data is no longer available after parallel regions ends

* |t is an error if multiple threads update the same variable at
the same time (a data race)

* |t is a good idea to use “default none” while testing code

 Putting code into a subroutine / function can make it easier
to write code with many private variables
— Local / automatic data in a procedure is private by default

69

Exercise: Mandelbrot set area

* The supplied program (mandel.c) computes the area of a
Mandelbrot set.

* The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

* Find and fix the errors (hint ... the problem is with the data
environment).

* Once you have a working version, try to optimize the
program.

— Try different schedules on the parallel loop.

— Try different mechanisms to support mutual exclusion ... do the
efficiencies change?

10

The Mandelbrot area program

#include <omp.h>

define NPOINTS 1000

define MXITR 1000

struct d_complex{
double r; double i;

void testpoint(struct d_complex c){
struct d_complex z;
int iter;
¥ double temp;
void testpoint(struct d_complex);
struct d_complex c; 2=C;

Int numoutside = 0; for (iter=0; iter<MXITR; iter++){
temp = (z.r*z.r)-(z.i*z.i)+c.r;

in’F mgip(){ Z.i=zr*zi*2+c.i;
int1, J; z.r = temp;
double area, error, eps = 1.0e-5; if (z.r*z.r+z.i*z.i)>4.0) {

#pragma omp parallel for default(shared) private(c, j) \

: . #pragma omp critical
firstpriivate(eps)

numoutside++;

for (i=0; i<NPOINTS; i++) { break
for (j=0; j<NPOINTS; j++) { }
c.r =-2.0+2.5*(double)(i)/(double)(NPOINTS)+eps; }
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps: }
testpoint(c);

} } * eps was not initialized
area=2.0"2.5*1.125*(double)(NPOINTS*NPOINTs- | Protect updates of numoutside
numoutside)/(double)(NPOINTS*NPOINTS): * Which value of ¢ does testpoint() see?

error=area/(double)NPOINTS; Global or private?

} 71

Outline

* Introduction to OpenMP
 Creating Threads
* Quantifying Performance and Amdahl’s law
e Synchronization
 Parallel Loops
» Data environment
=) « Memory model
* |rregular Parallelism and tasks
* Recap

* Beyond the common core:
— Worksharing revisited
— Synchronization: More than you ever wanted to know
— Thread private data

12

OpenMP memory model

e OpenMP supports a shared memory model
e All threads share an address space, but it can get complicated:

Shared memory

cachel cache2

e Multiple copies of data may be present in various levels of cache, or in registers

73

OpenMP and relaxed consistency

* OpenMP supports a relaxed-consistency
shared memory model

— Threads can maintain a temporary view of shared memory
that is not consistent with that of other threads

— These temporary views are made consistent only at certain
points in the program

— The operation that enforces consistency is called the flush operation

74

Flush operation

» Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory

— All previous read/writes by this thread have completed and are visible
to other threads

— No subsequent read/writes by this thread have occurred

— A flush operation is analogous to a fence in other shared memory
APls

75

Flush and synchronization

A flush operation is implied by OpenMP synchronizations, e.g.,
— at entry/exit of parallel regions
— at implicit and explicit barriers
— at entry/exit of critical regions

(but not at entry to worksharing regions)

This means if you are mixing reads and writes of a variable across multiple threads,
you cannot assume the reading threads see the results of the writes unless:

 the writing threads follow the writes with a construct that implies a flush.
* the reading threads preceed the reads with a construct that implies a flush.

This is a rare event ... or putting this another way, you should avoid writing code that
depends on ordering reads/writes around flushes.

76

Single worksharing Construct

* The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

« A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

17

The OpenMP Common Core: Most OpenMP programs only use these 16 constructs

OMP Construct

Concepts

#pragma omp parallel

parallel region, teams of threads, structured block, interleaved execution
across threads

int omp get thread num()
int omp_get num_threads()

Create threads with a parallel region and split up the work using the
number of threads and thread ID

double omp get wtime()

Speedup and Amdahl's law.
False Sharing and other performance issues

setenv OMP_NUM THREADS N

internal control variables. Setting the default number of threads with an
environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions. Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

worksharing, parallel loops, loop carried dependencies

reduction(op:list)

reductions of values across a team of threads

schedule(dynamic [,chunk])
schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list)

Data environment

nowait

disabling implied barriers on workshare constructs, the high cost of
barriers. The flush concept (but not the concept)

#pragma omp single

Workshare with a single thread

#pragma omp task
#pragma omp taskwait

tasks including the data environment for tasks.

18

