OmpCloud:
Bridging the Gap between
OpenMP and Cloud Computing

Hervé Yviquel, Marcio Pereira and Guido Araujo
University of Campinas (UNICAMP), Brazil

Y
hond A FAPESP

A bit of background

JGuido Araujo, PhD Princeton University
(AMarcio Pereira, PhD UNICAMP/UAlberta
JHervé Yviquel, PhD University of Rennes 1

» Research focus on Compiling Technology
o Thread-level speculation for loops
o Loop tiling and vectorization
o Cloud parallelization techniques for scientific workloads
o Parallel programming models (MapReduce, OpenMP)
o Heterogeneous computing (GPUs, DSPs, FPGAS)

My current work

 Compiling and Optimizing OpenMP 4.X
Programs to OpenCL and SPIR

» To be presentedin IWOMP on Thursday
» First to convert OpenMP 4.5 to OpenCL/SPIR
» Uses loop tiling and vectorization

» Based on Polyhedral techniques

The Cloud as a
Computing Resource

Several cloud providers
Amazon Web Service, Microsoft Azure, etc.
Private cloud infrastructure
Large datacenters
Almost infinite storage
Massively parallel processing capabilities

Flexible usage
Accessible to anyone with internet
Quick availability of the resources

The Cloud as a Solution

Ultimate solution for “The Rising of Big Data”
Social media (Facebook, Twitter, etc.)
Multimedia (Netflix, Spotify, etc.)

Useful for other application domains
Scientificapplications (HPC)
Mobile applications
Internet-of-Thing (loT)

BUT... HOW TO PROGRAM THE CLOUD ?

How to program the Cloud?

Application domain Programming model
* Small application using === * Python (orany language) +
cloud services (mobile, IoT,...) Cloud provider’s SDK

Easy learning

 Map-Reduce (and Spark)

High-level
Fault tolerance

* Big-data * MPI
Low-level programming
* HPC Very efficient

HOW ABOUT SOMETHING IN BETWEEN ?

Are you a programming expert ?

Writing parallel programs is complex
* Not so natural...

Integrating the cloud in your application might be
complex

e Hybrid execution (runningin the cloud and locally)
e Require various programming languages

Let’s make it simpler!

OpenMP

Well-known API for developing parallel application

 Directive-based programming
* Made to be simple and no need to rewrite the code
e But assume shared-memory architecture

void MatMul (float *A, float *B, float *C) {
#pragma omp parallel for
for(int 1=0; 1i<N; ++1)
for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)
C[i*N + j] += A[i*N + k] * B[k*N + j];

OpenMP Accelerator Model

Extension for programming accelerators (v4.0+)
 Designed for local accelerators (e.g. GPU)
* Host-target architecture model

void MatMul(float *A, float *B, float *C) {
—) #Hpragma omp target device(GPU) \
map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])
#pragma omp parallel for
for(int i=0; 1<N; ++1)
for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)
C[i*N + j1 += A[i*N + k] * B[k*N + j1;

The Cloud as an Accelerator

Let’s be brave!
* Introduce the cloud as an OpenMP offloading device
* Just another accelerator available in your computer

int MatMul(float *A, float *B, float *C) {
#pragma omp target device(CLOUD) \
map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])
#pragma omp parallel for
for(int 1=0; 1<N; ++1)
for(int j=0; j<N; ++j)
C[i*N + j] = O;
for(int k=0; k<N; ++k)
C[i*N + j] += A[i*N + k] * B[k*N + j];

OpenMP + Cloud = OmpCloud

Development environment for cloud offloading
e Open-source (available on Github)

* Rely on custom LLVM for host device

e Clang compiler
* OpenMP library

* Rely on Apache Spark for target device (cloud)

Cloud Offloading Workflow (1)

Describe the application using OpenMP
Compile it with our custom Clang

Instantiate a Spark cluster in your favorite cloud
provider (e.g. Amazon Web Service)

Configure the OmpCloud runtime with the
credentials for accessing the cluster in the cloud

Run the application !

Cloud Offloading Workflow (2)

Cloud target device

Spark
Driver Node

Cloud storage
(HDFS or S3)

®» © & ©

Fat binary generated
by LLVM

Target-agnostic
offloading wrapper

Target-specific offloading
plug-ins

Cloud configuration
file

Moau

1l

_tgt_init(.)

_tgt data_submit(..)

_tgt _data_retrieve(..) , ’

_tgt_run_region(..)

Cloud

|

ar host-target
plementation

7

Microsoft Azure

[

a

Google Cloud
[
libomptarget.so AWS
- — EC2/83 —
Target Cloud plugin S Clr -
arge , rivate Clou
—» agnostic GPU plugén) — SSH/HDFS —
wrapper
(2) DSP plugin Local compu’fer

omp_set_default_device(..)
omp_get number_devices(..)
_tgt_target(..)

Fat ELF binary (1)

LLVM

CPU

<

main(..)

BN

GPU

NN

DSP

L

Host code

Host CPU

I

DSP code

A A

ppc_region(..)

GPU code

Cloud code

A

JNI_region(..)

cuda_region(..)

Spark code |«

JAR binary

spark_submit(..)

Cloud Portability

No need to recompile your application. The code is
portable for all spark-based cloud device

[AzureProvider]

Cluster=clusterName Provider—specific
Container=containerName == .
StorageAccount=storageName options

StorageAccessKey=XXXXX
[Spark]

User=sshuser]
WorkingDir=/workspace/ -’r Common options

(... 7

—
‘

15

Data Partitioning

Mapping the data block to the cluster node usingit

Essential because...
Reduce communication overhead in distributed systems

But ...

Cannot be determined statically in general case
OpenMP does not provide mechanism to describe it

Let’s make it possible!

Extending OpenMP
for Data Partitioning

Partitions are described using data map clauses

void MatMul(float *A, float *B, float *C) {
#pragma omp target device(CLOUD) \
map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])
#pragma omp parallel for
for(int i=0; i<N; ++17)
— #pragma omp data map(to: A[i*N: (i+1)*N]) \
map(from: C[1*N: (i+1)*N])
for(int j=0; j<N; ++j)
C[i*N + j] = O;
for(int k=0; k<N; ++k)
C[i*N + j] += A[i*N + k] * B[k*N + j1;

N ¢

Matching Spark Execution Model

————— —4t—-—- 0 1 CO."l\

. @ Distribute :_“01'1\ 1 : C1 !
Read inputs (A and B) from the ———————»; RN } @ | Co |

| Broadcast E Lo | 3 MatMul(i, A, B) | 1 C3 !

o H \
L As Worker Node 0

cloud storage

Broadcast unpartitioned B N N

Generate the set of all values > ﬁ;ﬂl‘!ﬁ b Z
. : Ae i ! MatMul(i, A, B) 1~ ~Z'_ |

ta ken by the Ioop |ndeX @ LA Wo(rker :\lode1

Distribute Aandi N N T o

U Agh 2L 1 Go !
|0 cf’o

Map loop body function to the
values of the loop index

Send back parts of C
Reconstruct final version of C
Write C to the cloud storage

A Worker Node 2
r

e — - 12 i'é?;:\l
I==="

! L Ay |13 ' C13 |
V:A13! 14 @ EC14E

AN [¥
A @ 1 C
. '__CE_- Cloud Storage 18

Wanna see the generated
Spark (pseudo)code ?

// Read inputs as Array[Byte]
val A = DecompressFromStorage(0)
val B = DecompressFromStorage (1)

// Generate distributed list of tiled-1loop index values
val indexes = (0 to N-1).toRDD

// Partition data and distribute loop iterations

val results = indexes.map{ 1 => (1,
JNI loopbody (i, A.slice(i*N*4, ((i+1)*N*4), B)) }

// Reconstruct the output

val C = new Array[Byte] (N*N)

results.foreach{(i,Ci) =>
Ci.copyToArray(C, i*N*4, (i+1)*N*4)}

// Write the result back
CompressToStorage (3, C)

* Please note that 4 = sizeof(float) 19

Optimizing the Granularity

* Large overhead possible when
Number of iterations “N” >> Number of cores “C”
Because of JNI calls and data partitioning

* Loop tiling optimization
Blocking size [N/C| defined at runtime (parameter)
User-partitioning automatically adjusted

// Tiled parallel for

for 11=0 to N-1 by [N/C] do
for i=11i to min(ii+|N/C]-1,N-1) do
// 1loop body
end for
end for

Experiments

* Realistic test case
* Host = A laptop connected from UNICAMP, Brazil
* Target 2 AWS datacenter in US (North Virginia)

e Spark Cluster of 1 driver and 16 worker nodes

e EC2 instances of type c¢3.8xlarge (16 cores - 60GB of RAM)
* Ubuntu 14.04 with Spark 2.1.0

e Using a set of well-known benchmarks

powered by

amazon
web services™

Matrix Multiplication

Sparse/Dense matrices
B s Computation time
e el Intra-cluster communication

Matrlces 16000X16000 A— mm Host-Target communication
1GB / floating-point

Execution time
Sequential = 3.5h
256 cores = 3-8min

Increasing speedups
27x/68x on 256 cores

Communication
overhead

Data-type matter

Limitations of the
Programming Model

Code regions offloaded to the cloud

do support
* parallel for with nested loops
* reduction clause

do not support
e atomic, flush, barrier, critical, or master

will support
* blocks of sequential code
* parallel for inside a sequential loop

Cluster programming
made easy!

Sometimes, cloud offloading is not adapted
* No need to run from local computer
* Host-Target communicationsare expensive

One can run the app directly from the Spark driver
node

* Connect with SSH; transfer your app;
configure OmpCloud runtime; and run it !!

e Communicationsbetween the binary and Spark are
handled seamlessly using local file

Easy way to program cluster from C/C++

Conclusion (1)

Simple parallel programming model
e C/C++ and OpenMP directives
* No need to rewrite your code

New development environment
Offload computation to the cloud
Integrate the cloud in local application
* Program clusters

e Supportany cloud provider

Conclusion (2)

Early experiments
 Demonstrate viability on benchmarks
* Already showed promising performance

Future works
» Offload Blender rendering to cloud cluster
* Machine learning / Face recognition

Thanks!
Obrigado!
Merci!

Any questions ?

Check our website at ompcloud.org
Contact: herve.yviquel@ic.unicamp.br

27

