
OmpCloud:	
Bridging	the	Gap	between	

OpenMP and	Cloud	Computing

Hervé Yviquel,	Marcio Pereira and	Guido	Araújo
University	of	Campinas	(UNICAMP),	Brazil



A	bit	of	background

qGuido	Araujo,	PhD	Princeton	University
qMarcio Pereira,	PhD	UNICAMP/UAlberta
qHervé Yviquel,	PhD	University	of	Rennes	1

ØResearch	focus	on	Compiling	Technology
oThread-level	speculation	for	loops
o Loop	tiling	and	vectorization
o Cloud	parallelization	techniques	for	scientific	workloads
o Parallel	programming	models	(MapReduce,	OpenMP)
o Heterogeneous	computing	(GPUs,	DSPs,	FPGAs)

2



My	current	work

3

q Compiling and Optimizing OpenMP 4.X						
Programs to OpenCL and SPIR	

Ø To	be	presented	in	IWOMP	on	Thursday

Ø First	to	convert	OpenMP 4.5	to	OpenCL/SPIR

Ø Uses	loop	tiling	and	vectorization

Ø Based	on	Polyhedral	techniques



The	Cloud	as	a	
Computing	Resource

Several	cloud	providers	
Amazon	Web	Service,	Microsoft	Azure,	etc.
Private	cloud	infrastructure

Large	datacenters
Almost	infinite	storage
Massively	parallel	processing	capabilities

Flexible	usage
Accessible	to	anyone	with	internet
Quick	availability	of	the	resources

4



The	Cloud	as	a	Solution

Ultimate	solution	for	“The	Rising	of	Big	Data”
Social	media	(Facebook,	Twitter,	etc.)
Multimedia	(Netflix,	Spotify,	etc.)

Useful	for	other	application	domains
Scientific	applications	(HPC)
Mobile	applications
Internet-of-Thing	(IoT)

BUT...	HOW	TO	PROGRAM	THE	CLOUD	?

5



How	to	program	the	Cloud?

Application	domain
• Small	application	using
cloud	services (mobile,	IoT,...)

• Big-data
• HPC

Programming	model
• Python	(or	any	language)	+	
Cloud	provider’s	SDK
Easy	learning

• Map-Reduce	(and	Spark)
High-level	
Fault	tolerance

• MPI
Low-level	programming
Very	efficient

6

HOW	ABOUT	SOMETHING	IN	BETWEEN	?



Are	you	a	programming	expert	?

Writing	parallel	programs	is	complex
• Not	so	natural...

Integrating	the	cloud	in	your	application	might	be	
complex
• Hybrid	execution	(running	in	the	cloud	and	locally)
• Require	various	programming	languages

Let’s	make	it	simpler!

7



OpenMP

Well-known	API	for	developing	parallel	application
• Directive-based	programming
• Made	to	be	simple	and no	need	to	rewrite	the	code

• But	assume	shared-memory	architecture

8

void MatMul(float *A, float *B, float *C) {
#pragma omp parallel for
for(int i=0; i<N; ++i)

for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)

C[i*N + j] += A[i*N + k] * B[k*N + j]; 
}



OpenMP Accelerator	Model

Extension	for	programming	accelerators	(v4.0+)
• Designed	for	local	accelerators	(e.g.	GPU)
• Host-target architecture	model

9

void MatMul(float *A, float *B, float *C) {
#pragma omp target device(GPU) \

map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])

#pragma omp parallel for
for(int i=0; i<N; ++i)

for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)

C[i*N + j] += A[i*N + k] * B[k*N + j]; 
}



The	Cloud	as	an	Accelerator

Let’s	be	brave!
• Introduce	the	cloud	as	an	OpenMP offloading	device
• Just	another	accelerator	available	in	your	computer	

10

int MatMul(float *A, float *B, float *C) {
#pragma omp target device(CLOUD) \

map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])

#pragma omp parallel for
for(int i=0; i<N; ++i)

for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)

C[i*N + j] += A[i*N + k] * B[k*N + j]; 
}



OpenMP +	Cloud	=	OmpCloud

Development	environment	for	cloud	offloading
• Open-source	(available	on	Github)
• Rely	on	custom LLVM	for	host	device
• Clang	compiler
• OpenMP library	

• Rely	on	Apache	Spark	for	target	device	(cloud)

11



Cloud	Offloading	Workflow	(1)

1. Describe	the	application	using	OpenMP
2. Compile	it	with	our	custom	Clang
3. Instantiate	a	Spark	cluster	in	your	favorite	cloud	

provider	(e.g.	Amazon	Web	Service)
4. Configure	the	OmpCloud runtime	with	the	

credentials	for	accessing	the	cluster	in	the	cloud
5. Run	the	application	!

12



Worker Node 0

Worker Node 1

Worker Node N

::

Spark Node
Driver/Manager

Cloud storage
(HDFS or S3)

Cloud 
OMP 
kernel

Spark
Driver Node

Application

:
:
:

:
:
:
:
:

Cloud target deviceHost device

1

2

3

4

6

4

6

4

6

5

5

5

7

8

Cloud	Offloading	Workflow	(2)



Modular	host-target	
implementation

14

GPU code
DSP code

GPU

DSP

AWS
— EC2 / S3 —

Host CPU

Cloud

Local computer

Google Cloud

GPU plugin

DSP plugin

Cloud plugin
Target

agnostic
wrapper ...

...

libomptarget.so

Fat ELF binary

Private Cloud
 — SSH / HDFS —

Microsoft Azure

conf
file

Spark code

Cloud code

1

2

3

4

JAR binary

CPU
Host code

LLVM
JNI_region(…)

omp_set_default_device(…)
omp_get_number_devices(…)
_tgt_target(…)
…

main(…)

spark_submit(…)

cuda_region(…)

_tgt_init(…)
_tgt_data_submit(…)
_tgt_data_retrieve(…)
_tgt_run_region(…)
…

ppc_region(…)

Figure 2: Modular implementation of OpenMP accelerator
model; in gray is what we implemented to enable the cloud
as a novel device

erators, Jacob et al. [13] decomposed their implementation
in distinct components:

1 Fat binary generated by LLVM – which contains host and
target codes. While host code (contained in the main (...)
function) and target codes (such as function ppc_region

(...)) are typically embedded in the same fat binary using
the ELF format, our cloud target requires an additional
file to be generated: the Scala code describing the Spark
job (compiled to JAR binary). When submitting the job
to the cluster, the driver node runs the Scala program and
distributes the loop iteration among the worker nodes.
Then, the workers natively run (in C/C++) the function
describing the loop body (JNI_region(...)) through the
Java Native Interface (JNI) so as to avoid the translation
of C/C++ code to Scala. Obviously, this code had to be
compiled to a binary format compatible with the archi-
tecture of cloud processors;

2 Target-agnostic offloading wrapper – which is respon-
sible for the detection of the available devices, the cre-
ation of devices’ data environments, the execution of the
right offloading function according to the device type.
The wrapper implements a set of user-level runtime rou-
tines (such as omp_get_num_devices(...)) and compiler-
level runtime routines (such as _tgt_target(...)) which
allow the host code to be independent of the target device
type;

3 Target-specific offloading plug-ins – which performs the
direct interaction with the devices, according to their ar-

chitecture and provides services such as the initialization
and transmission of input and output data, and the exe-
cution of offloaded computation. In our case, the cloud-
specific plugin is used to initialize the cluster, to transmit
the offloaded data through the cloud file storage (HDFS
or S3), and to submit the Spark jobs.

There are some major differences when using the cloud to
offload computation when compared to other traditional tar-
get devices, such as GPUs. A remarkable difference is that
cloud devices cannot be detected automatically since they
are not physically hosted at the local computer. As a matter
of fact, the user has to provide an identification/authentica-
tion information (e.g. login) to allow the connection of the
current application to the cloud service which will be used
for offloading. Our cloud plugin reads at runtime a config-
uration file 4 to properly set up the cloud device and to
avoid the need to recompile the binary (assuming compati-
ble instruction-sets). Besides the login information, the con-
figuration file also contains the address of the Spark driver
as well as the address of the cloud file storage.

To allow an easy portability over existing cloud services,
our cloud plugin was implemented as a modular infrastruc-
ture where the communication with the cloud can be cus-
tomized for each existing cloud service by taking into ac-
count their specificities (e.g. storage services, security mech-
anisms, etc.). For now, our plugin supports computations
offloading to Spark cluster running within a private cloud
or Amazon Elastic Compute Cloud (EC2). We also support
data offloading both to HDFS and Amazon Simple Stor-
age Service (S3). Nevertheless, this can be easily extended
to support other commercial cloud services like Microsoft
Azure, Cloudera or Google Cloud. Moreover, during of-
floading our library is also able to (on-the-fly) start and stop
virtual machines from the EC2 service. In other words, the
EC2 instance can be started when offloading the code and
stopped after it ends its execution. As a result, the program-
mer can automatically control the usage of the cloud infras-
tructure, thus allowing him/her to pay for just the amount of
computational resources used.

4.2 Matching Spark execution model
As said before and shown in Figure 2, Spark clusters are
composed by one driver node associated with a set of worker
nodes (or simply workers). The driver is in charge of com-
munication with the outside world (i.e. host computer),
resource allocation and task scheduling. The workers per-
form computation by applying operations, mostly map and
reduce, in parallel on large datasets. In our programming
model, given that the loop has been annotated using a paral-
lel for clause, the programmer assumes that it is a DOALL
loop. Thus, the different iterations can be distributed and
computed in parallel among cloud cores without any restric-
tion, as no loop-carried dependence exists between itera-
tions.

4 2016/9/19

Fat	binary	generated	
by	LLVM	

2

1

Target-agnostic	
offloading	 wrapper	

4

Target-specific	offloading	
plug-ins

Cloud	configuration	
file

3



Cloud	Portability

15

[AzureProvider]
Cluster=clusterName
Container=containerName
StorageAccount=storageName
StorageAccessKey=XXXXX
[Spark]
User=sshuser
WorkingDir=/workspace/
(...)

Provider-specific	
options

Common	options

configuration.ini

No	need	to	recompile	your	application.	The	code	is	
portable	for	all	spark-based	cloud	device



Data	Partitioning

Mapping	the	data	block	to	the	cluster	node	using	it	

Essential	because...
Reduce	communication	overhead	in	distributed	systems

But	...
Cannot	be	determined	statically	in	general	case
OpenMPdoes	not	provide	mechanism	to	describe	it

Let’s	make	it	possible!

16



Extending	OpenMP
for	Data	Partitioning

17

void MatMul(float *A, float *B, float *C) {
#pragma omp target device(CLOUD) \

map(to: A[:N*N], B[:N*N]) \
map(from: C[:N*N])

#pragma omp parallel for
for(int i=0; i<N; ++i)

#pragma omp data map(to: A[i*N:(i+1)*N]) \
map(from: C[i*N:(i+1)*N])

for(int j=0; j<N; ++j)
C[i*N + j] = 0;
for(int k=0; k<N; ++k)

C[i*N + j] += A[i*N + k] * B[k*N + j];
}

Partitions	are	described	using	data	map	clauses



Matching	Spark	Execution	Model

A B C

Map

Driver Node

i

B

0
1
2
3

B

4
5
6
7

Reconstruct

C0
C1
C2
C3

C4
C5
C6
C7

B

8
9
10
11

C8
C9
C10
C11

Worker Node 3
B

12
13
14
15

C12
C13
C14
C15

Distribute

Broadcast

A B C Cloud Storage

JNI_
MatMul(i, A, B)

Worker Node 2

Worker Node 1

Worker Node 0

1

2

4

3

5

7

8

Map

JNI_
MatMul(i, A, B)

5

Map

JNI_
MatMul(i, A, B)

5

Map

JNI_
MatMul(i, A, B)

5 6

6

A4
A5
A6
A7

A8
A9
A10
A11

A0
A1
A2
A3

6

A12
A13
A14
A15

6

18

1. Read	inputs	(A	and	B)	from	the	
cloud	storage

2. Broadcast	unpartitionedB
3. Generate	the	set	of	all	values	

taken	by	the	loop	index
4. Distribute	A	and	i
5. Map	loop	body	function	to	the	

values	of	the	loop	index
6. Send back parts	of	C
7. Reconstruct	final	version	of	C	
8. Write	C	to	the	cloud	storage



Wanna see	the	generated
Spark	(pseudo)code	?

// Read inputs as Array[Byte]
val A = DecompressFromStorage(0)
val B = DecompressFromStorage(1)

// Generate distributed list of tiled-loop index values
val indexes = (0 to N-1).toRDD

// Partition data and distribute loop iterations
val results = indexes.map{ i => (i, 

JNI_loopbody(i, A.slice(i*N*4, ((i+1)*N*4), B)) }

// Reconstruct the output
val C = new Array[Byte](N*N)
results.foreach{(i,Ci) => 

Ci.copyToArray(C, i*N*4, (i+1)*N*4)}

// Write the result back
CompressToStorage(3, C)

* Please note that 4 = sizeof(float) 19



Optimizing	the	Granularity
• Large	overhead	possible	when

Number	of	iterations	“N”	>>	Number	of	cores	“C”
Because	of	JNI	calls	and	data	partitioning

• Loop	tiling	optimization
Blocking	size	⌊N/C⌋ defined	at	runtime	(parameter)
User-partitioning	automatically	adjusted

20

// Tiled parallel for
for ii=0 to N-1 by ⌊N/C⌋ do 

for i=ii to min(ii+⌊N/C⌋-1,N-1) do
// loop body

end for
end for 



Experiments
• Realistic	test	case
• Host	à A	laptop	connected	from	UNICAMP,	Brazil
• Target	à AWS	datacenter	in	US	(North	Virginia)	

• Spark	Cluster	of	1	driver	and	16	worker	nodes
• EC2	instances	of	type	c3.8xlarge	(16	cores	- 60GB	of	RAM)
• Ubuntu	14.04	with	Spark	2.1.0

• Using	a	set	of	well-known	benchmarks

21



22

Matrix	Multiplication

Matrices	16000x16000
1GB	/	floating-point

Execution	time
Sequential	=	3.5h
256	cores	=	3-8min

Increasing	speedups
27x/68x	on	256	cores

Communication	
overhead

Data-type	matter



Limitations of the
Programming Model

Code regions offloaded to	the cloud
do	support

• parallel for	with nested loops
• reduction clause

do	not support
• atomic,	flush,	barrier,	critical,	ormaster

will support
• blocks of sequential code
• parallel for	inside a sequential loop

23



Cluster	programming	
made	easy!

Sometimes,	cloud	offloading	is	not	adapted
• No	need	to	run	from	local	computer
• Host-Target	communications	are	expensive

One	can	run	the	app	directly	from	the	Spark	driver	
node
• Connect	with	SSH;	transfer	your	app;	
configure	OmpCloud runtime;	and	run	it !!
• Communications	between	the	binary	and	Spark	are	
handled	seamlessly	using	local	file

Easy	way	to	program	cluster	from	C/C++

24



Conclusion	(1)

Simple	parallel	programming	model
• C/C++	and	OpenMP directives
• No	need	to	rewrite	your	code

New	development	environment
• Offload	computation	to	the	cloud
• Integrate	the	cloud	in	local	application
• Program	clusters	
• Support	any	cloud	provider

25



Conclusion	(2)

Early	experiments
• Demonstrate	viability	on	benchmarks
• Already	showed	promising	performance

Future	works
• Offload	Blender rendering	to	cloud	cluster
• Machine	learning	/	Face	recognition

26



Thanks!	
Obrigado!
Merci!

Any	questions	?

Check	our	website	at	ompcloud.org
Contact:	herve.yviquel@ic.unicamp.br

27


