
Xinmin Tian, Hideki Saito, Satish Guggilla, Elena Demikhovsky, Matt Masten, Diego
Caballero, Ernesto Su, Jin Lin and Andrew Savonichev

Intel Compiler and Languages, SSG, Intel Corporation
September 18-20, 2017

OpenMPCon Developers Conference 2017, Stony Brook Univ., New York, USA

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
 Intel® Language Extensions to OpenCL*

 New Vectorizer and Parallelizer for Intel® OpenCL Compiler

 Autonomous Driving Workload: Grid Fusion Performance

 Summary

2

Putting Thread/Task and
SIMD Parallelism into
FPGA Pipeline Model on
SKX

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Putting thread- and vector-level parallelism into OpenCL*
FPGA pipeline model

Kernel2 KernelMKernel1 KernelNKernelM+1

Work

Single-work-item kernel pipeline

Adding Thread and SIMD parallelism into the pipeline

Kernel2 KernelMKernel1 KernelNKernelM+1

Work

Work

Work

Work

Work
Scalar Channel read/write => SIMD channel read/write
SIMD execution for the loops and functions called in the single work iterm kernel
Parallel execution for the loop in the single work iterm kernel

ThreadsThreads + vector Vector

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Extending OpenCL* with OpenMP* Functionalities

5

Intel FPGA Tools

OpenCL
+

Altera
extensions

FPGA Emulator

FPGA Compiler

FPGA

IA CPU

Intel OpenCL SDK

OpenCL
programs

using
single
work
item

kernels OpenCL* + Intel/Altera extensions: ioc

User code

Extending OpenCL* with OpenMP* like extensions for migrating
between FPGA tools and CPU tools

IA CPU

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* Subset for OpenCL*

Directives (with Clauses)

 Parallel / Parallel for

 Worksharing

 SIMD loop / function

 Taskloop

 Affinity

 Atomic

 Critical

 Master / Single

 … …

Environment variables

 Thread Settings

 Thread Controls

 Work Scheduling

 Affinity

 Operational

 Stack size

 … …

Runtime functions

 Thread Management

 Work Scheduling

 Tasking

 Affinity

 Locking

 … …

6

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Subset of OpenMP 4.5 Identified for Autonomous
Driving Workloads

7

 OpenMP Constructs:
– #pragma parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp taskloop

– #pragma omp declare simd

– #pragma omp simd

– #pragma omp atomic

– #pragam omp critical

 OpenMP Clauses:
– data-sharing clause: reduction, shared, private, firstprivate, lastprivate, linear, uniform

– simdlen, safelen

– schedule(static | guided, chunk)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Extending OpenCL* with
OpenMP* Programming Model
Single work-item kernel function
in the pipeline runs by one thread
and as a master thread

Master thread spawns a team of
threads / a league of thread
teams as needed.

Parallelism is added
incrementally until desired
performance is achieved: i.e. the
sequential program evolves into
a parallel program.

8

Master Thread

Outer 3-way
parallelism

Inner 9-way
parallelism

Outer 3-way
parallelism

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel for + SIMD Usage Example
__attribute__((max_global_work_dim(0))) __kernel void

sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp parallel for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

9

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Construct for Loops

Vectorize a loop

 Partition loop into chunks that fit a SIMD vector register

 No parallelization of the loop body

Syntax (OpenCL* is C99 based)
#pragma omp simd [clause[[,] clause],…]

for-loops

10

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Clauses
safelen(length)

 Maximum number of iterations that can run concurrently without breaking a dependence

simdlen(length)

 Specify preferred length of SIMD registers used

 Must be less or equal to safelen if both are present

linear(list[:linear-step])

 The variable’s value depends on the iteration number (xi = xorig + i * linear-step)

Reduction(operator: list)

 Eliminate loop-carried dependencies by doing partial computation and finalize the result
x = x + c => v_priv_x = v_priv_x + c; vec_x = vec_x + v_priv_x; x = horizontal_vector_add (vec_x)

aligned (list[:alignment])*

 Specifies that the list items have a given alignment

 Default is alignment for the architecture

11

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorize Loop with Carried Dependencies
Dependencies may occur across loop iterations (a.k.a Loop-carried lexical forward /
backward dependency)

The code below has a loop-carried lexical backward dependency. A loop iteration
has to complete before the next iteration can run

 Simple verifying trick: can you perform the loop reversal w/o getting wrong
results?

void lcd_ex(float* a, float* b, size_t n, int m, float c1, float c2) {
size_t i;
#pragma omp simd safelen(16) // programmer knows m >= 17
for (i = m; i < n; i++) {

a[i] = c1 * a[i - m] + c2 * b[i];
}

}

0 1 2 3 17 18 19 20

12

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Function Vectorization
Declare functions to be compiled for calls from a
SIMD loop

Syntax (C/C++):

 #pragma omp declare simd [clause[[,]
clause],…]

 [#pragma omp declare simd [clause[[,]
clause],…]]

 […]

 function-definition-or-declaration

#pragma omp declare simd

float min(float a, float b) {
return a < b ? a : b;

}

#pragma omp declare simd

float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

}

}

vec8 min_vec(vec8 a, vec8 b) {
return a < b ? a : b;

}

vec8 distsq_vec(vec8 x, vec8 y) {
return (x - y) * (x - y);

}
vd = min_vec(distsq_vec(va, vb), vc)

13

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Function Vectorization
#pragma omp declare simd

float sfoo(float x)

{ … …

}

Scalar C function
sfoo(x0)->r0
sfoo(x1)->r1
sfoo(x2)->r2
sfoo(x3)->r3
sfoo(x4)->r4
… …
Scalar execution

__m128 vecfoo(__m128 vx)

{….

}

Vector C function

Compiler created

Vector execution

vecfoo(x0…x3)->r0…r3

vecfoo(X4…X7)->r4…r7

… …

sfoo(x0)->r0 sfoo(x1)->r1 sfoo(x2)->r2 sfoo(x3)->r3

sfoo(x4)->r4 sfoo(x5)->r5 sfoo(x6)->r6 sfoo(x7)->r7

sfoo(x8)->r8 sfoo(x9)->r9 … … … …

… …

14

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorizing Loop with Math Function Calls

#pragma omp simd
for (i = 0; i < 1000; i++) {

array[i] = sinf(i);
}

hypot, floor, max, min,
atan2, sin, cos, clamp,,
etc.

15

Before Vectorization:
%call = call float @sinf(float %div) #4, !dbg !22

Adding a Clang FE patch would be something like:
%call = call float @llvm.sin.f32(float %div) #4, !dbg !22

After Vectorization:
%4 = call <4 x float> @llvm.sin.v4f32(<4 x float> %3), !dbg !27, !imf-precision !10, !imf-max-error !11

!10 = !{!“imf-precision=high"}
!11 = !{!“imf-max-error=0.6"}

After SVML translation pass:
%3 = call <4 x float> @__svml_sinf4_ha(<4 x float> %2)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD PROCESSOR Clause

New PROCESSOR clause extension to #pragma omp declare simd (to
define a SIMD routine) to target a specific processor

• Available for C/C++

• Intel extension – NOT part of official OpenMP specification

• Helpful to allow programmers to leverage e.g. Intel® AVX-2 and Intel® AVX-
512 beyond default Intel® SSE2 support (YMM+ZMM registers/operands
additionally to XMM)

16

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor Name Identifiers
 pentium_4
 pentium_m
 pentium_4_sse3
 core_2_duo_ssse3
 core_2_duo_sse4_1
 atom
 core_i7_sse4_2
 core_aes_pclmulqdq
 core_2nd_gen_avx
 core_3rd_gen_avx

 future_cpu_18 // KNF
 mic
 future_cpu_19 // KNC
 future_cpu_20 // HSW - no TSX
 core_4th_gen_avx // HSW – no TSX
 core_4th_gen_avx_tsx // HSW - TSX
 future_cpu_21 // BDW - NO TSX
 future_cpu_21_tsx // BDW - TSX
 future_cpu_22 // KNL
 future_cpu_23 // SKL 29

17

Putting Parallelization
and SIMD Vectorization
to Work for OpenCL*

New Vectorizer and
Parallelizer for Intel LLVM
OpenCL Compilers

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New Vectorizer and Parallelizer for OpenCL*
 Added a small set of extensions to the LLVM IR that are general

enough to represent directives or pragmas.

 Minimized the impact on the existing LLVM infrastructure and
scalar and loop optimizations.

 Built (still ongoing) a unified parallelization, vectorization and
offloading framework to support for directives (or pragmas)
based parallel, vector and offloading language extensions for
modern CPUs, GPUs, coprocessors, DSP, and FPGA to explore
target HW potential.

 Can produce optimal threaded and/or simdized code by
leveraging existing and future scalar and loop optimizations with
better interaction among optimization passes.

19

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallelization and Vectorization Framework

I. Prepare transformation / pre-
privatization

II. W-Region graph
construction

III. Privatization

IV. Loop partition and scheduling code
generation

V. Multi-thread code
generation

Scalar IR

Threaded IR

Lowering IR

II. Vector function processing

III. W-Region graph construction

IV. VPlan construction

VI. VPlan cost modeling

VII. Vector code generation

Scalar IR

Widened Vector IR

Operate on VPlan.
Input Scalar IR is
intact.

I. Prepare transformation / pre-privatization

V. VPlan analysis & optimization

20

Autonomous Driving
Workload: Grid Fusion

Achieved ~35x speedup
(~450ms down to ~13ms
on Intel® Scalable
Processors: 56-Core @
2.5GHz)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorizing Loops with Channel Reads/Writes
 SIMD loop vectorization does preserve channel read/write ordering

 Compiler does scalar / array expansion during vectorization

 Loop strip-mining, distribution, expansion are only needed if the channel
reads/writes are for non-POD (Plain of Old Datatype) data types

 Vector length is set based target architectures (e.g. AVX2, AVX512)

 Programmers can specify SIMDLEN

 All user-level function calls in the loop need to be annotated with “#pragma
omp declare simd”

 SIMD channel read/write built-in functions for POD data types are added to
OpenCL compiler for loop vectorization

Minimize FPGA and CPU Emulation Code Differences!

22

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorizing Loops with Channel Reads/Writes
#pragma omp simd simdlen(16)

for (int count = 0; count < GRID_SIZE*GRID_SIZE; count++) {
short ii = (count) & (GRID_SIZE - 1);
short jj = (count >> GRID_LOG_SIZE) & (GRID_SIZE - 1);
float accumulated_occupancy_input = (float)kBayesDefaultValue;
accumulated_occupancy_input = read_channel_intel(accum_grid_inp_pipe);
… ….
const float polar_occupancy = TransformPolarToCartesian(… …);
float accumulated_occupancy_output = BayesAccumulate(accumulated_occupancy_input,

polar_occupancy, 0.01F, 0.99F);
….
write_channel_intel(accum_grid_out_pipe, accumulated_occupancy_output);

} … … …

#pragma omp declare simd
float BayesAccumulate(const float first_operand, const float second_operand, const float min, const float max)

#pragma omp declare simd uniform(polar_grid, parameters)
float TransformPolarToCartesian(const float index_u, const float index_v,

__global const float *restrict polar_grid, __constant struct ParametersGridFusion* parameters)

23

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Parallelizing kernel_extract_pipelined
__attribute__((max_global_work_dim(0))) __kernel void kernel_extract_pipelined(

__constant struct ParametersExtractorStaticObstacles* const params,
__global uint8* const restrict distances, __global uint8* const restrict distances_vis_limit,
read_only pipe float __attribute__((depth(PIPE_DEPTH))) __attribute__((blocking)) fuse_grid_pipe)

{ … … …
#pragma ivdep

for (unsigned int index = 0; index < (kCartesianGridSize * kCartesianGridSize); index+=PAR_CHUNK) {
float fused_grid_input[PAR_CHUNK];

#pragma omp simd simdlen(16)
for (int s = 0; s < PAR_CHUNK; s++) { fused_grid_input[s] = read_channel_intel(fuse_grid_pipe); }

#pragma omp parallel for reduction(min: distances_local_even) reduction(min: distances_local_odd) \
reduction(min: distances_vis_limit_local_even) reduction(min: distances_vis_limit_local_odd)

for (int s = 0; s < PAR_CHUNK; s++) {
unsigned int i = (index + s) & (kCartesianGridSize - 1); unsigned int j = (index + s) / kCartesianGridSize;
ExtractStaticObstaclesExact(fused_grid_input[s], params, distances_local_even, distances_local_odd,

distances_vis_limit_local_even, distances_vis_limit_local_odd, index, i, j
#ifndef INTEL_OCL_FPGA_CPU_EMU

, &last_seg_index_even, &last_seg_index_odd, &last_dist_even, &last_dist_odd, &last_vis_limit_even, &last_vis_limit_odd
#endif

);
}

}
… … …

}

~4.5x Speedup with 16 Threads through Loop Parallelization

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop Vectorization in Kernel_Accumulate_Pipelined
__attribute__((max_global_work_dim(0))) // SINGLE_WORKITEM_KERNEL: only executed by one thread in the pipeline

__kernel void kernel_accumulate_pipelined(
__constant struct ParametersGridFusion* kernel_parameters,
__global const float* const restrict polar_measurement_grid,
__read_only pipe float __attribute__((depth(PIPE_DEPTH))) __attribute__((blocking)) accum_grid_inp_pipe,
__write_only pipe float __attribute__((depth(PIPE_DEPTH))) __attribute__((blocking)) accum_grid_out_pipe)

{
const float sensor_rel_x = kernel_parameters->sensor_rel_x; const float sensor_rel_y = kernel_parameters->sensor_rel_y;
const int start_column = kernel_parameters->clear_start_column; const int end_column = kernel_parameters->clear_end_column;
const int start_row = kernel_parameters->clear_start_row; const int end_row = kernel_parameters->clear_end_row;
… …. ….
#pragma omp simd simdlen(16)
for (int count = 0; count < GRID_SIZE*GRID_SIZE; count++) {

short ii = (count) & (GRID_SIZE - 1);
short jj = (count >> GRID_LOG_SIZE) & (GRID_SIZE - 1);
float accumulated_occupancy_input = (float)kBayesDefaultValue;
accumulated_occupancy_input = read_channel_intel(accum_grid_inp_pipe);

if (GetClearVector(ii, jj, start_column, end_column, start_row, end_row)) accumulated_occupancy_input = (float)kBayesDefaultValue;
const float polar_occupancy = TransformPolarToCartesian(ii, jj, polar_measurement_grid, kernel_parameters);
float accumulated_occupancy_output = BayesAccumulate(accumulated_occupancy_input, polar_occupancy, 0.01F, 0.99F);

write_channel_intel(accum_grid_out_pipe, accumulated_occupancy_output);
} … … …

}

SKX performance improvement ~5.9x with Intel® AVX-512 through Vectorization

25

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Functions called by Kernel_Accumulated_Pipelined
#pragma omp declare simd uniform(start_column,end_column,start_row,end_row)
int GetClearVector(const int ii, const int jj,

const int start_column, const int end_column,
const int start_row, const int end_row)

{ // column
int clear_grid_cell = (start_column < end_column) & ((ii >= start_column) &(ii < end_column));

clear_grid_cell |= (start_column > end_column) & ((ii >= start_column) | (ii < end_column));
// row
clear_grid_cell |= (start_row < end_row) & ((jj >= start_row) & (jj < end_row));
clear_grid_cell |= (start_row > end_row) & ((jj >= start_row) | (jj < end_row));
return clear_grid_cell;

}

#pragma omp declare simd
float BayesAccumulate(const float first_operand, const float second_operand, const float min, const float max)
{ const float a = first_operand * second_operand;

const float b = 1.0F - first_operand - second_operand;
const float c = 2.0F * a + b;
return clamp(a / c, min, max); // 10 dsp per iteration

}

#pragma omp declare simd uniform(polar_grid, parameters)
float TransformPolarToCartesian(const float index_u, const float index_v,

__global const float *restrict polar_grid, __constant struct ParametersGridFusion* parameters)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Grid Fusion Performance Improvements

SIMD channel overhead is ~8ms

Time
in ms

Gain w/
Channels

How was it done

~450 1.0x Intel OpenCL baseline

~87ms ~5.2x Channel Support (from ~450ms)

~13ms ~35x Overall speedup (from ~450ms) on SKX

Maximal computation cost is ~5ms

Ttotal = Max(Tacc0, Tacc1, …, Tacc.N, Tfuse, Textractor) + Tchannels

Scalar channel overhead is ~16ms

For example: kernel accumulate performance gain without channel cost is
(77ms – 16ms) / 5ms = 12.2x

27

Gain w/
Channels cost

Gain w/o
Channels Cost

How was it done

~5.9x ~12.2x Vectorize loop in kernel
_Accumulate

~4.0x ~7.2x Vectorize loop in Kernel _Fuse

~4.5x ~8.6x Parallelize loop in Kernel _Extractor

Table II. Speedup of three Hot Kernel Functions

Table I: Grid-Fusion Workload Performance Speedup

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary

The reality:

 There is no one single solution that would make all programmers happy after
decades of trying.

 There is no free lunch for effectively utilizing SIMD HW, multicore CPUs, FPGA,
accelerators and GPUs.

 There are many emerging programming models for multicore CPUs, FPGA,
accelerators and GPUs.

 Programming languages and compilers are driven by hardware and applications

 The incremental approach of applying the learnings from Application Domains
(e.g. autonomous driving) is working

Bridging OpenCL* and OpenMP* for Exploiting Thread- and SIMD Parallelism
in Single Work-Item Kernel to achieve optimal performance on IA

28

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

41

The end

