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OUTLINE

▪ QMC basics and QMCPACK

▪ OpenMP introduced from the 

beginning

▪ Performance portable on CPUs 

via OpenMP 4.0 simd

▪ Experimenting OpenMP 4.5 

offloading for the future
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QUANTUM MONTE CARLO BASICS



QMC AND QMCPACK

▪ Quantum Monte Carlo is not a single method.

▪ Quantum mechanics + Monte Carlo algorithms

▪ QMCPACK, is a modern high-performance open-source Quantum Monte Carlo 

(QMC) simulation code. Its main applications are electronic structure calculations 

of molecular, quasi-2D and solid-state systems.
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▪ QMCPACK is C/C++, MPI+X(OpenMP, CUDA)

▪ At qmcpack.org and public @ github

▪ ECP application development award



VARIATIONAL MONTE CARLO (VMC)
From the variational principle.
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▪ The goal is to solve Schrodinger equation 

with Monte Carlo technique.

▪ Monte Carlo methods can be used to 

evaluate multi-dimensional integrals much 

more efficiently than deterministic methods.

▪ The random walking is performed by many 

walkers on individual Markov Chains. 𝐸 =෍

𝑅

𝐸𝐿(𝑅)

𝐸𝐿 𝑅 =
෡𝐻Ψ𝑇(𝑅)

Ψ𝑇(𝑅)



DIFFUSION MONTE CARLO(DMC) SCHEMATICS
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Possible new 

configurations
Old configurations

New 

configurations

Ensemble

w=0.8

w=1.6

w=2.4

w=0.3

Random Walking

Markov chain, 

time evolution



DMC ALGORITHM
Multiple levels of parallelism can be exploited.
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• Loop 2: walkers (~10 per node) are distributed both 

over MPI and cores/SMs using OpenMP and CUDA.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle (~1k) concurrency, 

exposed to GPU threads and CPU SIMD.



WALKER LEVEL PARALLELISM (COARSE)



SINGLE-NODE MANAGEMENT
Ensure data locality
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MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables,     WF scratch

Hamiltonian,    B-spline pointer

• Walkers carry minimum data

• A high level #omp parallel

• One mover on each thread 

holding scratch data

• #omp for over the walker loop

• Only one synchronization at 

the end of parallel region

• Near perfect on-node weak 

scaling



SINGLE-NODE MANAGEMENT
Need OpenMP for large shared data
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MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables,     WF scratch

Hamiltonian,    B-spline pointer

• Single particle orbitals are 

stored in memory and 

replicated on every node for 

fast evaluation. 

• 20-40% computational cost.

• Large size up to 1~100x GB 

memory

• Read-only, initialized once.

• Frequent random access.

• OpenMP shared memory 

model



PARTICLE LEVEL PARALLELISM (FINE)



PERFORMANCE ISSUE (BGQ/KNL)

• Numerical light kernels (Jastrows

and Distance tables) are taking a 

lot of time.

• Vectorization is needed to be 

reworked for KNL

A lot of inefficiency
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WHY PERFORMANCE IS LOW

▪ All in double precision but 3D B-Spline.

▪ SIMD efficiency low

– Array of Structure (AoS) for D-dim 

particle attributes, e.g., R (N,3), 

Gradients, Hessians, Matrices

– Good OOP but not ideal for the high 

performance on Xeon Phi

– Basically scalar performance with few 

exceptions

• Einspline – SSE/SSE2/QPX

• Distance tables with QPX

SIMD efficiency is low
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SSE:

r2 = _mm_shuffle_pd (tmp0, tmp1, 

_MM_SHUFFLE2(0, 0));

tmp0 = _mm_load_pd (P(1,2)); 

_MM_DDOT4_PD(r0, r1, r2, r3,     b01,    b23,    

b01,    b23,    bP01r);

_MM_DDOT4_PD(r0, r1, r2, r3,    db01,   db23,   

db01,   db23,   dbP01r);

QPX:

__dcbt(&gx [n+8]);

__dcbt(&vals [n+8]);

vector4double coef0 = vec_ld(0, &coefs0[n]);

vector4double coef1 = vec_ld(0, &coefs1[n]);

vector4double sum0, sum1, sum2;

sum0 = vec_mul (vec_c0, coef0);

sum0 = vec_madd(vec_c1, coef1, sum0);



MIXED PRECISION (TOP DOWN)

• 20-55% gain on KNL

• 70% gain on BG/Q

• Should gain more with good 

vectorization.

• Need to handle double/float with 

a performance portable code.

Gain performance not only on KNL but also on BG/Q.
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VECTORIZATION (BOTTOM UP)

We desire

▪ Old codes

– Minimized changes

▪ New implementation

– Single source

– Both float/double types

– No intrinsics

– Any vector length

– Any alignment requirement

– Any compiler

– Any CPU vendor

Requirements and tools
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We have

▪ C++

– Template

– Operator overloading

▪ OpenMP 4.0

– #pragma omp simd with aligned clause

arXiv: 1708.02645, to be published at SC17 

10.1145/3126908.3126952



SOA VECTOR CLASS

▪ Alignment is handled by aligned_vector

▪ Code changes

Solve the compatibility issue and enables SoA data layout
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template <typename T, unsigned D>
struct VectorSoaContainer
{

// (size+padding)*D elements
aligned_vector<T> X;
// access a single struct
TinyVector <T,D> operator[](size_t i) const;
// access an array
T * data(size_t i);

};

Vector<TinyVector<T, 3> > R, G;
Vector<TinyVector<T, 6> > H;

VectorSoaContainer<T, 3> Rsoa, Gsoa;
VectorSoaContainer<T, 6> Hsoa;



OPENMP SIMD CONSTRUCT

▪ No alignment detail needed

▪ Only vector load/store in 

assembly

▪ Flexible to vector length

Elegant way of expressing SIMD
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for(int idim=0; idim<3; ++idim)
{
const valT* restrict new_dX=new_dr.data(idim);
const valT* restrict old_dX=old_dr.data(idim);
const valT* restrict cur_du_pt=cur_du.data();
const valT* restrict old_du_pt=old_du.data();
valT* restrict save_g=dUat.data(idim);
#pragma omp simd aligned(old_dX,new_dX,…)
for(int jat=0; jat<N; jat++)
{

const valT newg = cur_du_pt[jat] * new_dX[jat];
const valT dg = newg - old_du_pt[jat]*old_dX[jat];
save_g[jat] -= dg;

}
}



TWO BODY JASTROW FACTOR
Use an update algorithm
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▪ Two body potential 𝑈(𝑖, 𝑗)

▪ Only need σ𝑗𝑈(𝑖, 𝑗)

▪ Memory footprint N2=>N

▪ Still N2 complexity but smaller 

prefactor

▪ All vectorizable computation
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NIO 64 ATOM BENCHMARK
A huge save in memory footprint, 49GB=>13GB
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arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952  



ROOFLINE ANALYSIS
Significant gain in the distance table and the Jastrow
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▪ On BDW, only DDR

▪ Drop from 47% to 8%

▪ Huge improvement in 

algorithmic intensity

▪ Everything in L3

arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952  



BENCHMARK
Significant speed on all the platforms
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arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952  



SUMMARY

▪ OpenMP solves memory issue

▪ It expresses our on-node parallelization including threading and vectorization

▪ It enables very clean and understandable code

▪ It gives perfect thread scaling and SIMD efficiency

▪ How about accelerators? 
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EXPERIMENTING OPENMP OFFLOAD



WHY WE NEED OMP OFFLOAD

▪ In the past

– Two large fork for CPU and GPU(CUDA)

– Largely incompatible, datatypes/dataflow

– Lack of developers and hard to implement both

– GPU code features only parts of functionality

▪ In long term

– Need a portable solution

– Not depend on proprietary solutions

– Portable performance is desired
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PERFORMANCE PORTABILITY

On multiple architectures including CPU and GPU.

1. Capability: Can we express the required parallelism?

2. Performance: Can we achieve good performance?

3. Portability: What is the extent of required changes?

4. Support: How are compilers, libraries, tools?

Assess OpenMP
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MINIQMC

▪ We have accumulated a set of miniapps during SoA optimization.

▪ They are 

– Stand-alone separated from QMCPACK.

– Expressing the same concurrency as QMCPACK.

– Using state-of-art algorithms.

▪ To collaborate with non-QMCPACK developers

▪ Become public on github by the end of Sep. 2017

Via miniapp route

26



3D CUBIC B-SPLINE KERNEL

▪ Two level parallelism.

▪ MultiBspline computes N orbital values 

at a given electron coordinates

▪ Inner loop iel is serial

Initial version (v0)
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#pragma omp parallel
{
T x,y,z; T *v, *g, *h;
#pragma omp for
for(size_t iw=0; iw<nw; iw++)

for(size_t iel; iel<Nel; iel++)
MultiBspline ::VGH(x,y,z,v,g,h);

}

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

// compute the lower-bound x0, y0, z0
// compute prefectors using (x-x0, y-y0, z-z0)
for(size_t i,j,k=0; i,j,k<4; i,j,k++)

#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }



DMC ALGORITHM
Multiple levels of parallelism can be exploited.
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• Loop 2: walkers (~10 per node) are distributed both 

over MPI and cores/SMs using OpenMP and CUDA.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle (~1k) concurrency, 

exposed to GPU threads and CPU SIMD.



3D CUBIC B-SPLINE KERNEL
Loop interchanged (v1)
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Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

for(size_t i,j,k=0; i,j,k<4; i,j,k++)
#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }

for(size_t iel; iel<Nel; iel++)
{
T* x,y,z; T **v, **g, **h;
#pragma omp target teams distribute \
num_teams(nw)

//#pragma omp parallel for
for(size_t iw=0; iw<nw; iw++)

#pragma omp parallel num_threads(N)
MultiBspline ::VGH(x[iw],y[iw],z[iw],

v[iw],g[iw],h[iw]);
}



DATA MAPPING TO DEVICE

▪ Vector type is the most 

used datatype in 

QMCPACK. 

Hide with class 
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template<typename T, class Container = std::vector<T>>
class OMPVector:public Container
{
T * vec_ptr;
inline OMPVector(size_t size = 0): vec_ptr(nullptr) { resize(size); }
inline void resize(size_t size) {

vec_ptr = Container::data();
#pragma omp target enter data map(alloc:vec_ptr[0:size])

}
inline void update_to_device() const
{ #pragma omp target update to … }
inline void update_from_device() const
{ #pragma omp target update from … }
inline ~OMPVector()
{ #pragma omp target exit data map(delete:vec_ptr) }

};

Each mover has
OMPVector<T> val;

mover 0
collects pointers and
handles the offload.
OMPVector<T *> val_shadows;



3D CUBIC B-SPLINE KERNEL
Second loop interchanged inside device region (v2)
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Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++)
{
T v, gx, hxx …;
for(size_t i,j,k=0; i,j,k<4; i,j,k++) {

v+=F(b[n]); gx+=Gx(b[n]); …
hxx+=Hxx(b[n]); …

}
v[n]=v; gx[n]=gx …

} } }

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

for(size_t i,j,k=0; i,j,k<4; i,j,k++)
#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }



PERFORMANCE NIO 1X1X1 (SMALL)

0

0.2

0.4

0.6

0.8

1

1.2

tile 192

Speed-up

CPU v0 CPU v1 GPU v1 CPU v2 GPU v2

192 spline SPOs using 160 walkers, 160 threads

32

▪ IBM power 8 + pascal, Clang

▪ v1 is a bit  slower than v0 due 

to fork/join overhead

▪ v2 on CPU is slower than v1

▪ v2 on GPU is faster than v1



PERFORMANCE NIO 2X2X1 (MEDIUM)
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▪ IBM power 8 + pascal, Clang

▪ v1 fork/join overhead is 

negligible

▪ v2 on CPU is slower than v1

▪ v2 on GPU is faster than v1



REMARKS

▪ GPU performance has potential improvement

– 142 register/thread and low occupancy 18.8%.

– Little use of shared memory

– Measured HBM bandwidth is only ~80GB/s far from peak.

– How to improve?

▪ Single source with portable performance is not achieved on this kernel at the 

moment. Maybe compiler can do more?

▪ Complier quality is improving but takes time.

– Application developer can help finding bugs.

– More accessible info via compiler report.

▪ Limited performance tool.
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PERSPECTIVE



PERSPECTIVE

▪ More kernels will be attempted using OpenMP offloading. We will have better

understanding of the situation.

▪ 80/20 rule.

– 80% routines take 20% time.

• Old way. Write codes for both CPU and GPU, GPU code is good enough 

just to avoid data transfer.

• New way. Write a single code.

– 20% routines take 80% time.

• Performance portable code

• Architecture-specific code if really necessary.

OpenMP is promising
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