
OpenMPCon

THE PAST, PRESENT AND
FUTURE OF QMCPACK WITH
OPENMP

erhtjhtyhy

Stony Brook, Sep 19， 2017

Ye Luo1, Anour Benali1, Jeongnim Kim2, Paul R.C. Kent3

1, Argonne Leadership computing facility
2, Intel Corporation
3, Oak Ridge National Laboratory

OUTLINE

▪ QMC basics and QMCPACK

▪ OpenMP introduced from the

beginning

▪ Performance portable on CPUs

via OpenMP 4.0 simd

▪ Experimenting OpenMP 4.5

offloading for the future

2

▪ This work is supported by Intel Corporation to establish the Intel

Parallel Computing Center at Argonne National Laboratory.

▪ This research has used resources of the Argonne Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357.

▪ This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory, which

is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC05-00OR22725.

▪ This research was supported by the Exascale Computing

Project (17-SC-20-SC), a joint project of the U.S. Department of

Energy’s Office of Science and National Nuclear Security

Administration, responsible for delivering a capable exascale

ecosystem, including software, applications, and hardware

technology, to support the nation’s exascale computing

imperative.

QUANTUM MONTE CARLO BASICS

QMC AND QMCPACK

▪ Quantum Monte Carlo is not a single method.

▪ Quantum mechanics + Monte Carlo algorithms

▪ QMCPACK, is a modern high-performance open-source Quantum Monte Carlo

(QMC) simulation code. Its main applications are electronic structure calculations

of molecular, quasi-2D and solid-state systems.

4

▪ QMCPACK is C/C++, MPI+X(OpenMP, CUDA)

▪ At qmcpack.org and public @ github

▪ ECP application development award

VARIATIONAL MONTE CARLO (VMC)
From the variational principle.

5

▪ The goal is to solve Schrodinger equation

with Monte Carlo technique.

▪ Monte Carlo methods can be used to

evaluate multi-dimensional integrals much

more efficiently than deterministic methods.

▪ The random walking is performed by many

walkers on individual Markov Chains. 𝐸 =෍

𝑅

𝐸𝐿(𝑅)

𝐸𝐿 𝑅 =
෡𝐻Ψ𝑇(𝑅)

Ψ𝑇(𝑅)

DIFFUSION MONTE CARLO(DMC) SCHEMATICS

6

Possible new

configurations
Old configurations

New

configurations

Ensemble

w=0.8

w=1.6

w=2.4

w=0.3

Random Walking

Markov chain,

time evolution

DMC ALGORITHM
Multiple levels of parallelism can be exploited.

7

• Loop 2: walkers (~10 per node) are distributed both

over MPI and cores/SMs using OpenMP and CUDA.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle (~1k) concurrency,

exposed to GPU threads and CPU SIMD.

WALKER LEVEL PARALLELISM (COARSE)

SINGLE-NODE MANAGEMENT
Ensure data locality

9

MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables, WF scratch

Hamiltonian, B-spline pointer

• Walkers carry minimum data

• A high level #omp parallel

• One mover on each thread

holding scratch data

• #omp for over the walker loop

• Only one synchronization at

the end of parallel region

• Near perfect on-node weak

scaling

SINGLE-NODE MANAGEMENT
Need OpenMP for large shared data

10

MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables, WF scratch

Hamiltonian, B-spline pointer

• Single particle orbitals are

stored in memory and

replicated on every node for

fast evaluation.

• 20-40% computational cost.

• Large size up to 1~100x GB

memory

• Read-only, initialized once.

• Frequent random access.

• OpenMP shared memory

model

PARTICLE LEVEL PARALLELISM (FINE)

PERFORMANCE ISSUE (BGQ/KNL)

• Numerical light kernels (Jastrows

and Distance tables) are taking a

lot of time.

• Vectorization is needed to be

reworked for KNL

A lot of inefficiency

12

0 10 20 30 40

Inverse Update

3D B-Spline

Phase Factors

Dist. Tables

2-Body Jastrow

1-Body Jastrow

Others

CPU profiling on BGQ

Update walkers Ratio/Derivative NLPP Others

WHY PERFORMANCE IS LOW

▪ All in double precision but 3D B-Spline.

▪ SIMD efficiency low

– Array of Structure (AoS) for D-dim

particle attributes, e.g., R (N,3),

Gradients, Hessians, Matrices

– Good OOP but not ideal for the high

performance on Xeon Phi

– Basically scalar performance with few

exceptions

• Einspline – SSE/SSE2/QPX

• Distance tables with QPX

SIMD efficiency is low

13

SSE:

r2 = _mm_shuffle_pd (tmp0, tmp1,

_MM_SHUFFLE2(0, 0));

tmp0 = _mm_load_pd (P(1,2));

_MM_DDOT4_PD(r0, r1, r2, r3, b01, b23,

b01, b23, bP01r);

_MM_DDOT4_PD(r0, r1, r2, r3, db01, db23,

db01, db23, dbP01r);

QPX:

__dcbt(&gx [n+8]);

__dcbt(&vals [n+8]);

vector4double coef0 = vec_ld(0, &coefs0[n]);

vector4double coef1 = vec_ld(0, &coefs1[n]);

vector4double sum0, sum1, sum2;

sum0 = vec_mul (vec_c0, coef0);

sum0 = vec_madd(vec_c1, coef1, sum0);

MIXED PRECISION (TOP DOWN)

• 20-55% gain on KNL

• 70% gain on BG/Q

• Should gain more with good

vectorization.

• Need to handle double/float with

a performance portable code.

Gain performance not only on KNL but also on BG/Q.

14

0

0.5

1

1.5

2

2.5

3

3.5

16c 1HT 16c 4HT 32c 1HT 64c 1HT 64c 2HT 64c 4HT

Rutile (TiO2)36 864 electrons
DMC throughput

DP KNL MP KNL BG/Q DP BG/Q MP

VECTORIZATION (BOTTOM UP)

We desire

▪ Old codes

– Minimized changes

▪ New implementation

– Single source

– Both float/double types

– No intrinsics

– Any vector length

– Any alignment requirement

– Any compiler

– Any CPU vendor

Requirements and tools

15

We have

▪ C++

– Template

– Operator overloading

▪ OpenMP 4.0

– #pragma omp simd with aligned clause

arXiv: 1708.02645, to be published at SC17

10.1145/3126908.3126952

SOA VECTOR CLASS

▪ Alignment is handled by aligned_vector

▪ Code changes

Solve the compatibility issue and enables SoA data layout

16

template <typename T, unsigned D>
struct VectorSoaContainer
{

// (size+padding)*D elements
aligned_vector<T> X;
// access a single struct
TinyVector <T,D> operator[](size_t i) const;
// access an array
T * data(size_t i);

};

Vector<TinyVector<T, 3> > R, G;
Vector<TinyVector<T, 6> > H;

VectorSoaContainer<T, 3> Rsoa, Gsoa;
VectorSoaContainer<T, 6> Hsoa;

OPENMP SIMD CONSTRUCT

▪ No alignment detail needed

▪ Only vector load/store in

assembly

▪ Flexible to vector length

Elegant way of expressing SIMD

17

for(int idim=0; idim<3; ++idim)
{
const valT* restrict new_dX=new_dr.data(idim);
const valT* restrict old_dX=old_dr.data(idim);
const valT* restrict cur_du_pt=cur_du.data();
const valT* restrict old_du_pt=old_du.data();
valT* restrict save_g=dUat.data(idim);
#pragma omp simd aligned(old_dX,new_dX,…)
for(int jat=0; jat<N; jat++)
{

const valT newg = cur_du_pt[jat] * new_dX[jat];
const valT dg = newg - old_du_pt[jat]*old_dX[jat];
save_g[jat] -= dg;

}
}

TWO BODY JASTROW FACTOR
Use an update algorithm

18

▪ Two body potential 𝑈(𝑖, 𝑗)

▪ Only need σ𝑗𝑈(𝑖, 𝑗)

▪ Memory footprint N2=>N

▪ Still N2 complexity but smaller

prefactor

▪ All vectorizable computation

i

j

k

accept

(a)

k

i k

accept

(b)

v

i k

- + =

k

NIO 64 ATOM BENCHMARK
A huge save in memory footprint, 49GB=>13GB

19
arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952

ROOFLINE ANALYSIS
Significant gain in the distance table and the Jastrow

20

▪ On BDW, only DDR

▪ Drop from 47% to 8%

▪ Huge improvement in

algorithmic intensity

▪ Everything in L3

arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952

BENCHMARK
Significant speed on all the platforms

21
arXiv: 1708.02645,

to be published at SC17 10.1145/3126908.3126952

SUMMARY

▪ OpenMP solves memory issue

▪ It expresses our on-node parallelization including threading and vectorization

▪ It enables very clean and understandable code

▪ It gives perfect thread scaling and SIMD efficiency

▪ How about accelerators?

22

EXPERIMENTING OPENMP OFFLOAD

WHY WE NEED OMP OFFLOAD

▪ In the past

– Two large fork for CPU and GPU(CUDA)

– Largely incompatible, datatypes/dataflow

– Lack of developers and hard to implement both

– GPU code features only parts of functionality

▪ In long term

– Need a portable solution

– Not depend on proprietary solutions

– Portable performance is desired

24

PERFORMANCE PORTABILITY

On multiple architectures including CPU and GPU.

1. Capability: Can we express the required parallelism?

2. Performance: Can we achieve good performance?

3. Portability: What is the extent of required changes?

4. Support: How are compilers, libraries, tools?

Assess OpenMP

25

MINIQMC

▪ We have accumulated a set of miniapps during SoA optimization.

▪ They are

– Stand-alone separated from QMCPACK.

– Expressing the same concurrency as QMCPACK.

– Using state-of-art algorithms.

▪ To collaborate with non-QMCPACK developers

▪ Become public on github by the end of Sep. 2017

Via miniapp route

26

3D CUBIC B-SPLINE KERNEL

▪ Two level parallelism.

▪ MultiBspline computes N orbital values

at a given electron coordinates

▪ Inner loop iel is serial

Initial version (v0)

27

#pragma omp parallel
{
T x,y,z; T *v, *g, *h;
#pragma omp for
for(size_t iw=0; iw<nw; iw++)

for(size_t iel; iel<Nel; iel++)
MultiBspline ::VGH(x,y,z,v,g,h);

}

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

// compute the lower-bound x0, y0, z0
// compute prefectors using (x-x0, y-y0, z-z0)
for(size_t i,j,k=0; i,j,k<4; i,j,k++)

#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }

DMC ALGORITHM
Multiple levels of parallelism can be exploited.

28

• Loop 2: walkers (~10 per node) are distributed both

over MPI and cores/SMs using OpenMP and CUDA.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle (~1k) concurrency,

exposed to GPU threads and CPU SIMD.

3D CUBIC B-SPLINE KERNEL
Loop interchanged (v1)

29

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

for(size_t i,j,k=0; i,j,k<4; i,j,k++)
#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }

for(size_t iel; iel<Nel; iel++)
{
T* x,y,z; T **v, **g, **h;
#pragma omp target teams distribute \
num_teams(nw)

//#pragma omp parallel for
for(size_t iw=0; iw<nw; iw++)

#pragma omp parallel num_threads(N)
MultiBspline ::VGH(x[iw],y[iw],z[iw],

v[iw],g[iw],h[iw]);
}

DATA MAPPING TO DEVICE

▪ Vector type is the most

used datatype in

QMCPACK.

Hide with class

30

template<typename T, class Container = std::vector<T>>
class OMPVector:public Container
{
T * vec_ptr;
inline OMPVector(size_t size = 0): vec_ptr(nullptr) { resize(size); }
inline void resize(size_t size) {

vec_ptr = Container::data();
#pragma omp target enter data map(alloc:vec_ptr[0:size])

}
inline void update_to_device() const
{ #pragma omp target update to … }
inline void update_from_device() const
{ #pragma omp target update from … }
inline ~OMPVector()
{ #pragma omp target exit data map(delete:vec_ptr) }

};

Each mover has
OMPVector<T> val;

mover 0
collects pointers and
handles the offload.
OMPVector<T *> val_shadows;

3D CUBIC B-SPLINE KERNEL
Second loop interchanged inside device region (v2)

31

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++)
{
T v, gx, hxx …;
for(size_t i,j,k=0; i,j,k<4; i,j,k++) {

v+=F(b[n]); gx+=Gx(b[n]); …
hxx+=Hxx(b[n]); …

}
v[n]=v; gx[n]=gx …

} } }

Class MultiBspline {
T b[Nx][Ny][Nz][N]
void VGH(T x, T y, T z, T* v, T* g, T *h)
{

for(size_t i,j,k=0; i,j,k<4; i,j,k++)
#pragma omp for nowait
//#pragma omp simd
for(size_t n=0; n<N; n++) {
v[n]+=F(b[n]);
gx[n]+=Gx(b[n]); …
hxx[n]+=Hxx(b[n]); …

} } }

PERFORMANCE NIO 1X1X1 (SMALL)

0

0.2

0.4

0.6

0.8

1

1.2

tile 192

Speed-up

CPU v0 CPU v1 GPU v1 CPU v2 GPU v2

192 spline SPOs using 160 walkers, 160 threads

32

▪ IBM power 8 + pascal, Clang

▪ v1 is a bit slower than v0 due

to fork/join overhead

▪ v2 on CPU is slower than v1

▪ v2 on GPU is faster than v1

PERFORMANCE NIO 2X2X1 (MEDIUM)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tile 768

Speed-up

CPU v0 CPU v1 GPU v1 CPU v2 GPU v2

768 spline SPOs using 160 walkers, 160 threads

33

▪ IBM power 8 + pascal, Clang

▪ v1 fork/join overhead is

negligible

▪ v2 on CPU is slower than v1

▪ v2 on GPU is faster than v1

REMARKS

▪ GPU performance has potential improvement

– 142 register/thread and low occupancy 18.8%.

– Little use of shared memory

– Measured HBM bandwidth is only ~80GB/s far from peak.

– How to improve?

▪ Single source with portable performance is not achieved on this kernel at the

moment. Maybe compiler can do more?

▪ Complier quality is improving but takes time.

– Application developer can help finding bugs.

– More accessible info via compiler report.

▪ Limited performance tool.

34

PERSPECTIVE

PERSPECTIVE

▪ More kernels will be attempted using OpenMP offloading. We will have better

understanding of the situation.

▪ 80/20 rule.

– 80% routines take 20% time.

• Old way. Write codes for both CPU and GPU, GPU code is good enough

just to avoid data transfer.

• New way. Write a single code.

– 20% routines take 80% time.

• Performance portable code

• Architecture-specific code if really necessary.

OpenMP is promising

36

