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lattice qcd



lattice quantum chromodynamics (qcd)

quarks'

gluons'

⇒
I Lattice QCD is a numerical framework to simulate quarks and gluons, the
fundamental particles involved in strong interactions, from the theory of QCD.

I It is formulated on a discrete four-dimensional space-time grid or lattice.
I Quarks live on the lattice sites, and can propagate through the gluon ”lattice
links”.

I Monte Carlo simulations are performed to generate the quantum fields of the
gluons or ”the gauge field ensemble”.

I Complex calculations are made on these gauge ensembles to obtain physics
results of relevance to experiments or other theoretical predictions.
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lattice qcd compute kernel

I The core kernel of lattice QCD is matrix vector multiplications - the so-called
Dslash operator.

Dij
αβ(x, y)ψ

j
β(y) =

4∑
µ=1

[
(1 − γµ)αβUµ

ij(x)δx+µ̂,y

+ (1 + γµ)αβU†
µ

ij
(x + µ̂)δx−µ̂,y

]
ψj
β(y)

I x, y - regular 4-dimensional grid
points.

I γµ - 4 × 4 matrices (fixed).
I Uµ(x) - complex SU(3) matrices.
I ψ(y) - complex 12-component vectors.
I nearest-neighbor, 9-point stencil

operator.
quarks'

gluons'

I The Dslash operations make up 70-90% of the computation time.
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other components of lattice qcd

I Numerical algorithms
I Monte Carlo sampling: Metropolis, Heatbath, ...
I Molecular Dynamics (combined with Monte Carlo→ Hybrid Monte Carlo)
I Linear equation solvers: Ax = b
I Eigenvalue solvers: Ax = λx

I Physics applications
I Actions: discretization schemes for the quarks and gluons
I Measurements: evaluation of Feynman-diagram like graphs.
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τ

t t’

τ
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going into exascale

Physics Objectives

I Increase the precision of certain critical calculations to understand fundamental
symmetries in high-energy physics by an order of magnitude.

I Extend the calculations of the light nuclei and multi-nucleon systems in nuclear
physics with quark masses that are closer to their values in nature.

Software Requirements

I Efficiency: Should be able to efficiently exploit the expected multiple levels of
parallelism on the exascale architectures. Need to conquer the communication
bottleneck.

I Flexibility: Should be flexible for the users to implement different algorithms and
physics calculations, and can provide easy access to multi-layered abstractions
for the users.

I Performance Portability: Should be portable to minimize code changes for
different architectures while maintaining competitive performance.
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the evolution of lqcd hardware
and programming models



lattice qcd and computer technology

I Lattice QCD calculations require a lot of computing power.
I Uniform space-time structure→ suitable for parallel computing.
I Assign a sub-lattice to each computing processor (with conventional data layout).

T.D.Lee 80th Birthday Celebration, Nov. 24, 2006 (7)

Lattice QCD and Computers

• Enormous computing requirements!

• Uniform space-time structure !
parallel computing.

• Assign a cluster of space-time grid 
points to each processor.

• Local gauge symmetry ! mesh 
network.

• Simple, repetitive arithmetic ! special arithmetic hardware.

• Opportunity for QCD-specific computers.
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the qcdsp supercomputer

I QCDSP (1998 – 2004):
Quantum Chromodynamics on Digital Signal Processors

A QCDSP node QCDSP at Columbia, 1 TFlops (1012) Peak

I Designed by a group at Columbia and Brookhaven National Lab.
I Digital Signal Processor-based node
I 4-D mesh for communications.
I ∼ 12,288 nodes installed at BNL and Columbia.
I Won 1998 Gordon Bell Prize for price performance: $10/Mflops(sustained)

An MIMD machine, but typically programmed in SPMD. No threading.
Hardware-specific message passing. No MPI.
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the qcdoc supercomputer

I QCDOC (2004 – 2010): QCD On a Chip

QCDOC, 20 TFlops Peak
I Designed by lattice theorists at Columbia, RBRC, Edinburgh, in collaboration with IBM.
I PowerPC-based node, operating at 400 MHz.
I 6-D mesh for communications.
I 12, 288 × 2 nodes installed at BNL, and 12, 288 nodes at Edinburgh
I $1/Mflops(sustained)

Still no threading.
Internode communication through QCD Message Passing (QMP) interface (may or may
not depend on MPI).
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qcdcq and bluegene/q

QCDCQ (QCD with Chiral Quarks)

I Designed in-house by Columbia, Edinburgh and RBRC in collaboration with IBM.
I Follow-on to QCDOC and BlueGene machines.

QCDOC QCDCQ
1 node 1 core 16 cores
peak performance/node 0.8 GFlops 200 GFlops
peak performance/rack (1024 nodes) 0.8 TFlops 200 TFlops

I Much more cost efficient: $0.02/Mflops(sustained)
I Several racks installed at BNL and University of Edinburgh.
I Prototype machine for BlueGene/Q

Threading became very important. MPI+X model used.
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pc clusters

I Clusters with PC processors are now commonplace.
I Some clusters dedicated to lattice QCD simulations in the US:

10q cluster at Jefferson Lab JPsi cluster at Fermilab KNL cluster at JLab

I Things have changed a lot since 15 years ago...

Some OpenMP usage. But often running multiple MPI processes per node.
Intel’s new many integrated core (MIC) architecture (Knights Corner and Knights
Landing) makes it very important to have OpenMP threading in the code.
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lattice qcd on gpgpus

I LQCD theorists have been active users of Titan at OLCF and other GPU computing
resources.

OpenCL, OpenACC, CUDA all have been explored by different groups.
Most popular now: CUDA.
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current us lattice qcd software stack

Current USQCD1 software stack consists of four levels:

I Level 1 - QLA, QMT, QMP: BLAS, communication and threading support.
I Level 2 - QDP++, QDP, QIO: Lattice data parallel layer and I/O.
I Level 3 - Inverter, MDWF, QOPQDP, QUDA2 : Lattice QCD APIs.
I Level 4 - Chroma, CPS, FUEL, MILC, QLUA: Application suites.

1The USQCD Collaboration is a consortium of US scientists working on lattice QCD.
2QUDA is a lattice QCD API written specifically for GPUs with CUDA C.
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proposed exascale qcd software layer

I Because the LQCD software has evolved overtime with the target hardware, the
programming models and styles are a mixture of many things.

I Over the years, MPI+X has become the most popular choice.
I A new software stack is being developed under the ECP application development
project.

I Performance portability is one of the key considerations for the new design.multiple forms of parallelism, including MPI processes, threads and wide SIMD units, or GPU warps. Since
some of the hardware implements constrained-data parallelism, and our regular structured grid sparse matrix
problem is amenable to this, it is natural that this simple interface be data parallel.

Libraries - Domain Specific
QUDA, QPhiX, BAGEL/BFM, QOP

Libraries - General
HDF5, LAPACK, ARPACK, etc

Data Parallel Frameworks
LQCD data, Expression Syntax, Interfaces to Programming Models & I/O 

Applications 
Gauge Generation, Propagators, Correlation Function Construction 

Workflow
Scripting, Serialization, Databases, Interfaces to Data Parallel frameworks

Algorithms
Multigrid solvers, Deflation, Integrators, Variance Reduction, Tensor Contraction

Figure 1: Layers of the proposed software infrastructure.

The proposed application infrastructure
includes application components, pro-
gramming interfaces, libraries and an ex-
ecution environment. It is illustrated by
the layered architecture shown in Fig. 1.
The topmost level consists of a Workflow
Layer which will enable the interopera-
tion of the various applications needed
to carry out scientific campaigns. Imple-
mented in terms of a very high level lan-
guage, the high-productivity workflow
layer will be made to interface with the
proposed software framework, at several levels, wrapping applications and also through direct interfacing
to the data parallel layer. It will also interface to existing codes as necessary to supplement features that are
not yet available in the new code base. This high-level layer will strive to be as simple as possible to use
while still allowing the user to express their intentions in a way that allows the full use of the flexibility and
optimizations available at the lower levels. We refer to this loosely as scripting in Fig. 1 although the above
description clearly indicates is much more than that. Interoperability implies the accessibility of common
file formats as well as APIs and technologies to enable data to persist between tasks.
The Applications layer that follows will consist primarily of gauge generation, propagator calculation and
contraction applications which then make use of the algorithmic components in the Algorithms layer.
A large proportion of our technical innovation will be integrated in the Data Parallel Frameworks layer, upon
which the algorithm development will be based. These frameworks will encode LQCD datatypes, operations
and common computational patterns such as stencil operations, and interface to the underlying programming
models targeting multi-core and GPU-based systems. It will also interface to general purpose libraries and
I/O. This layer will present developers with a unified view of mechanisms to manage hierarchical memories,
either by forwarding to those defined by programming models or by wrapping system-specific interfaces.
Several lessons are crucial to our strategy for the data parallel layer for exascale systems. First the data
parallel layer in previous SciDAC codes has been highly beneficial to productivity. The QDP++ library that
underlies the Chroma application has supported rapid prototyping of solvers and gauge evolution algorithms.
However, that previous framework targeted single-core processors, executing scalar operations using mes-
sage passing parallelism. While this approach initially provided a degree of performance portability, the gap
between domain specific libraries and code written in the old data parallel layer has now become large.
Further, our earlier frameworks were designed to support only a single lattice geometry. Now our analysis
methods have become increasingly complex, and we need a variety of components, some working on 5d, 4d,
and some on 3d lattices and some, such as final state contractions, without a lattice structure at all. When
only a single lattice is supported, these distinct tasks must communicate inelegantly; sometimes between
program instances through persistent storage, making LQCD workflows increasingly complex. Multi-level
solvers are a recent algorithmic revolution and a key part of the algorithms required by the multi-scale
physics enabled by the exascale; they also introduce multiple lattice structures in a single program instance.
Historically, high-performance, low-level libraries have always been used to implement the most performance-
critical code. Hence we separate our Library layer into both Domain Specific and General Purpose com-
ponents. Experience gained from these high performance libraries for BlueGene/Q (Bagel [9, 10]), GPUs

5
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some specific examples



Optimizing the Dslash operator in Columbia Physics System (CPS)

People Involved:

I Stony Brook University
Eric Papenhausen

I Reservoir Labs Inc.
M. Harper Langston
Benoit Meister
Muthu Baskaran

I BNL
Chulwoo Jung
Taku Izubuchi
ML
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the domain wall dslash operator

I The Domain Wall (DW) fermion matrix can be written as

MDW
x,s;x′,s′ = (4 − m5)δx,x′δs,s′ −

1
2

DW
x,x′δs,s′ + D5

s,s′δx,x′ , (1)

where m5 is the domain wall height, DW
x,x′ is the Wilson Dslash operator, and D5

ss′
is the fermion mass term that couples the two boundaries in the 5th dimension,

D5
ss′ = −

1
2
[
(1 − γ5)δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′

]
+

mf

2
[
(1 − γ5)δs,Ls−1δ0,s′ + (1 + γ5)δs,0δLs−1,s′

]
. (2)

I Most FLOPs are in the 4D derivative term ((4 − m5)δx,x′δs,s′ − 1
2 DW

x,x′δs,s′ ) in
Eq.(1): 1320 flops per site.
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single instruction multiple data (simd)

I Modern CPUs, both by Intel and AMD, support vector instructions.
I SSE: 128-bit vector register, capable of 2 DP/4 SP flops per cycle.
I AVX: 256-bit vector register, capable of 4 DP/8 SP flops per cycle.
I AVX2: AVX with fused multiply-add (FMA).
I AVX512: Intel KNL, Skylake, ...

I Data layout is the key: Data in one SIMD operation need to fit into the same
vector register. With AVX, the following instructions should be able to execute in
one clock cycle.
double a[4], b[4], c[4];
for (int n=0; n<4; n++) c[n] = a[n] + b[n];

a[0] a[1] a[2] a[3]

b[0] b[1] b[2] b[3]

+

I There also cannot be any data dependencies among the SIMD data.
I In DWF 4D Dslash, the s coordinates are completely independent. ↪→ Good place
to vectorize.
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dwf data layout

I We chose the following data layout to enable us to vectorize in the fifth (s)
dimension.

chi[NX*NY*NZ*NT/2][2][3][4][NS/2][2]

4D even-odd checkerboard

real/complexs even/odd

color/spin

I In one AVX register, with single precision, the data mapping goes

s=0, Re s=0, Im s=2, Re s=2, Im s=4, Re s=4, Im s=6, Re s=6, Im AVX Register

I SIMD intrinsics were used to implement the vectorized DWF Dslash.
I Tried omp simd, but performance was very poor.
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other optimizations

I FMA: AVX2 provides intrinsics to perform fused multiply-add. However, we found
that simply turning on -mfma compiler option for gcc gave us the same
performance boost as using intrinsics.

I Improved data locality:
I We studied tiling to increase memory reuse, but didn’t gain any performance.
I We also explored using a space-filling curve, implemented as the Z-curve, to improve

data locality, but the performance boost was minimal.

I Prefetching: Before the computation of each stencil operation, prefetch data
needed for the next stencil. Led to 10% performance improvement.

I On Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz processor (Haswell), with 84 × 8
lattice, we achieved 34% peak single-core performance in single precision.

Optimization AVX2 Tiling Z-Curve Prefetching
time [ms] 0.86 0.92 1.0 0.76
Gflops 25.1 23.5 21.6 28.5
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multithreading with openmp

I Within the node, we use OpenMP for multithreading.
I Three strategies have been explored:

I Simple Pragma: Thread the outer loop, usually the t loop.
↪→ Parallelism is limited by the t dimension size, won’t scale well in many-core systems.

#pragma omp parallel for private(tmp_tst)// collapse(4)
for(t=1; t<lt+1; t++)
for(z=1; z<lz+1; z++)

for(y=1; y<ly+1; y++)
for(x=2; x<lx+2; x++)
...

I Compressed Loop: Compress the nested loops into one single loop.
I Explicit Work Distribution: Similar to Compressed Loop, but explicitly assign work to

each thread.

#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();
int work = NT*NZ*NY*(NX/2)/nthreads;
int start = tid * work;
int end = (tid+1) * work;
for(lat_idx = start; lat_idx < end; lat_idx++)
......
}
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openmp performance

Performance was measured on LIRED, with dual-socket Haswell per node @ 2.6 GHz
(24 cores).

I 84 × 8

Num. Threads Simple Pragma Compressed Loop Explicit Dist.
1 28.4 GF/s 28.0 GF/s 28.0 GF/s
2 51.5 GF/s 54.1 GF/s 54.1 GF/s
4 90.1 GF/s 90.1 GF/s 90.1 GF/s
8 135.2 GF/s 135.2 GF/s 144.2 GF/s
16 127.2 GF/s 180.2 GF/s 154.4 GF/s

I 163 × 32 × 8:

Num. Threads Simple Pragma Compressed Loop Explicit Dist.
1 26.9 GF/s 26.5 GF/s 26.8 GF/s
2 54.5 GF/s 52.0 GF/s 52.8 GF/s
4 100.3 GF/s 96.1 GF/s 100.3 GF/s
8 168.8 GF/s 160.9 GF/s 168.8 GF/s
16 197.7 GF/s 182.1 GF/s 192.2 GF/s
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openmp summary

I Three threading approaches result in similar performances, except when the
problem size is small, Simple Pragma doesn’t scale as well.

I Surprisingly, the performance does not deteriorate with a much larger lattice size
↪→ possible indication of poor cache reuse.

I Volume comparison:
Left - Compressed Loop. Right - Explicit Work Distribution.
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We also found that that binding OpenMP threads to the processors was key to
improve OpenMP performance. With gcc, this is done through
export OMP_PROC_BIND=true 25



overlapping comms and compute

I To improve strong scaling, we also overlapped comms and compute.
I The communication pattern is illustrated in the following. There is blocking for
each transfer sequence.

1

2

34

2

1

4 3

I The best performance is obtained with 2 MPI processes per node (1 MPI process
per socket, improved data locality).

I With each MPI process, a number of threads equal to the number of compute
cores are used.

I We dedicate one thread (the master thread) to do the communications, and the
rest of the threads for computation3 .

I Do bulk computation first while waiting for the communication to complete, then
do the boundary computation.

3May also be done with OpenMP tasking
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multinode performance

I Strong scaling study of a
323 × 64 × 8 calculation was
performed on LIRED, with
dual-socket Intel Haswell CPUs and
Mellanox 56 Gigabit FDR
interconnect.

I The performance scales well up to 4
nodes, and scales sublinearly from 8
to 16 nodes.

I After 4 nodes, the total time is
dominated by the communication
time.

I Bulk computation itself scales well
with the number of nodes.

I Rediscovered the old truth:
Communication is the bottleneck for
strong scaling!
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Exascale Performance Portability for LQCD

People Involved:

Peter Boyle University of Edinburgh
Kate Clark NVIDIA
Carleton DeTar University of Utah
ML BNL
Verinder Rana Brookhaven National Laboratory
Alejandro Vaquero University of Utah
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why do we care about performance portability?

I A single version of portable code is easier to maintain.
I Less time spent on integrating the low-level APIs with the application layer, and
more time on physics and algorithm development.

I Question: how much performance are we willing to lose in exchange for
portability?

I The answer may be ”0”. But looking towards the future, with potentially more
diverse architectures, are we able to continue our current approach?
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ways to performance portability?

Various tools are under development for performance portability.

I High-level compiler directives
I OpenMP
I OpenACC

I High-level programming abstractions:
I RAJA (LLNL)
I Kokkos (Sandia)
I SYCL (Kronos)
I C++ AMP (Microsoft)
I ...

I Code generators/Source-to-source compilers
LQCD community have investigated:

I JIT: QDP-JIT (JLab/Frank Winter)
I Nim: QEX (ANL/James Osborn)
I R-Stream compiler (Reservoir Labs)

Question: should we design our new software with portability in mind first and then
optimize for performance later, or the other way around? Can we design our software
with performance portability in mind from the beginning?
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grid

I Grid4 is a next-generation C++ lattice QCD library being developed by Peter Boyle,
Guido Cossu, Antonin Portelli and Azusa Yamaguchi at the University of
Edinburgh.
https://github.com/paboyle/Grid

I Originally developed and optimized for CPUs. Being used as a testbed for QCD
ECP performance portability.

I It uses new features in C++11 for abstractions and programming flexibility.
I Data layout designed to match CPU SIMD lanes.

I Vector data layout: Decompose four-dimensional grids into sub-domains that
map perfectly onto the target SIMD length.

Grid: A next generation C++ library for data parallel QCD

Overdecomposed physical node
SIMD vector

Virtual nodes

Figure 2: A key idea is to overdecompose and then interleave elements from different virtual nodes in
adjacent SIMD lanes. After transformation it is simple to generate code such that one node performs the
work on N = 4 virtual nodes, each with a correspondingly reduced local volume.

2.3 Cshifting implementation

Circular shift of Grid lattice containers by an arbitrarily large distance in any dimension is
supported. For example, the following code performs a data parallel multiplication a distributed
fields B and C together and takes the y-derivative of C, with work being decomposed across MPI
ranks, OpenMP threads and SIMD lanes automatically.

LatticeColourMatrix A(Grid), B(Grid), C(Grid), dC_dy(Grid);

int Ydim = 1;

A = B

*

C;

dC_dy = 0.5

*

( Cshift(C,Ydim,+1) - Cshift(C,Ydim,-1) );

While, the SIMD efficiency of site local operations is clear in our scheme, for site non-local
operations such as a finite difference operator this is also true but less clear. The symmetry of a
cartesian mesh means that the neighbours of any element of one virtual node also align with the
neighbours of corresponding elements of other virtual. The code for processing N-virtual nodes
therefore looks identical to that for processing a single scalar node but the datum is simply N-fold
larger. For stencil connections that cross boundaries between sub-cells a permutation, is addi-
tionally required since for example a blue element of the result vector may need to reference a
red neighbour and vice versa, see Figure 3. These non-arithmetic steps are both efficient SIMD
operations, and are suppressed by the surface to volume ratio.

(A, B, C , D)
� �� �

virtual subnode

(E , F , G , H)
� �� �

virtual subnode

� (AE , BF , CG , DH)
� �� �

Packed SIMD

� (BF , CG , DH, AE)
� �� �

cshift bulk
�

(BF , CG , DH, EA)
� �� �

permute face

� (B, C , D,E)
� �� �

virtual subnode

(F , G , H,A)
� �� �

virtual subnode

Figure 3: Permutation, and all SIMD lane crossing overhead, is suppressed by the surface to volume ratio
in our interleaved virtual node scheme; we illustrate here a one-dimensional example of a cshift operation.
Only the interior three steps are performed in grid since this is the native, internal data layout – the exterior
diagrammatic representation as unpacked into virtual nodes is illustrative only.

2.4 Stencil support

A Cshift closes an expression template, to avoid complex implicit book keeping in expressions
such as a cshift of a cshift. It is wise to make it easy to implement high performance routines for

7

4Peter Boyle et al. “Grid: A next generation data parallel C++ QCD library”. In: (2015). arXiv: 1512.03487
[hep-lat].
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vectorization for cpus

I Vectorization is achieved in different ways on different targets, either using
intrinsics, or explicit short scalar loops for compiler vectorization, and possibly
using OpenMP SIMD pragmas depending on target.

I But the implementation details are abstracted inside templated data types.

//Vectorization
#ifdef GEN
#include ”Grid_generic.h”
#endif
#ifdef SSE4
#include ”Grid_sse4.h”
#endif
#if defined(AVX1) || defined (AVXFMA) || defined(AVX2) || defined(AVXFMA4)
#include ”Grid_avx.h”
#endif
#if defined AVX512
#include ”Grid_avx512.h”
#endif

// Abstract Data Types
typedef Grid_simd< float, SIMD_Ftype > vRealF;
typedef Grid_simd< double, SIMD_Dtype > vRealD;
typedef Grid_simd< std::complex< float > , SIMD_Ftype > vComplexF;
typedef Grid_simd< std::complex< double >, SIMD_Dtype > vComplexD;
typedef Grid_simd< Integer, SIMD_Itype > vInteger;
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parallelism in grid

I Grid uses OpenMP for on-node threading and MPI for inter-node
communications.

I Lattice-wide operations are done in a big for loop over the outer lattice sites.

PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){

ret._odata[ss] = trace(lhs._odata[ss]);
}

I PARALLEL_FOR_LOOP is a macro currently defined as an OpenMP parallel
construct. It potentially can be replaced with OpenACC for GPU.

#ifdef GRID_OMP
#include <omp.h>
#define PARALLEL_FOR_LOOP _Pragma(”omp parallel for ”)
#define PARALLEL_NESTED_LOOP2 _Pragma(”omp parallel for collapse(2)”)
#else
#define PARALLEL_FOR_LOOP
#define PARALLEL_NESTED_LOOP2
#endif
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grid expression template

I Extensive use of templates to allow for high-level abstractions.
GridCartesian Grid(latt_size,simd_layout,mpi_layout);

LatticeColourMatrix A(&Grid);
LatticeColourMatrix B(&Grid);
LatticeColourMatrix C(&Grid);

C = A * B

I Expression template makes this possible.

I Many architectures supported with impressive performance.

P. Boyle
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grid c++ expression template

Some Background

I GPU is not among the supported architectures at the moment.
I Initial GPU porting effort started last year using OpenACC.

I Ran into many issues due to Grid’s complex data structures. ↪→ deep copy
I PGI compiler did not sufficiently support C++11 code.
I STL not supported on GPUs.
I Porting whole Grid turned out to be rather difficult.

I Proof-of-concept studies using stripped-down version of Grid expression
template (ET).

Grid ET

I ∼ 200 lines of self-contained code, provided by P. Boyle.
I Arithmetic operations contained in the recursive eval function
↪→ for loop is target to be offloaded to the GPU.

template <typename Op, typename T1,typename T2> inline Lattice<obj> & operator=(const
LatticeBinaryExpression<Op,T1,T2> expr)

{
int _osites=this->Osites();

for(int ss=0;ss<_osites;ss++){

_odata[ss] = eval(ss,expr);
}
return *this;

}
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different approaches studied

OpenACC/OpenMP
I Pros: Directives-based approach; Easy to add to existing code;
Portable across different platforms.

I Cons: Lack of deep-copy support; Use in C++ code non-trivial;
Dependent on compiler; Developer has little control.

Just-In-Time: Jitify
I New JIT header library being developed at NVIDIA.

See GTC2017 talk - Ben Barsdell, Kate Clark “Jitify: CUDA C++
Runtime Compilation Made Easy”

I Pros: No need for CUDA extensions (though available). CPU and
GPU execution policies can be present simultaneously.

I Cons: Runtime compilation. Kernel functions need to be given
in header files.

CUDA
I Pros: Mature programming model for NVIDIA GPUs. C++ support
is steadily improving. Easy to control for performance.

I Cons: Need to write some CUDA kernels; Some code branching
unavoidable. Supports NVIDIA GPUs only. Need to declare all
host device functions.

Developer  
Effort

Developer 
 Control
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openmp/openacc offload compiler support (circa 2016)

I OpenMP:
I GCC: v6.1 has full C/C++ support for OpenMP 4.5.
I Intel: v16 has support for OpenMP 4.0.
I Cray: supports OpenMP 4.0
I Clang/LLVM: v3.8 supports some OpenMP 4.0 and 4.5
I ...

I OpenACC:
I PGI (NVIDIA)
I Cray
I GCC 6.1
I Research compilers: OpenUH (U of Houston), OpenARC (ORNL)

I Targets/Architectures (to be) supported:
I AMD and NVIDIA GPUs
I Intel MICs and Xeons
I IBM Power
I ARM
I FPGA
I ...
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comparison of different implementations

Kernel

OpenACC
#pragma acc parallel loop independent copyin(expr[0:1])
for(int ss=0;ss<_osites;ss++){

_odata[ss] = eval(ss,expr);
}

OpenMP

#pragma omp target device(0) map(to: expr) map(tofrom:_odata[0:_osites])
{
#pragma omp teams distribute parallel for

{
for (int i=0; i<_osites; i++)

_odata[ss] = eval(ss,expr);
}

}

Jitify
parallel_for(policy, 0, _osites,

JITIFY_LAMBDA( (_odata,expr),
_odata[i]=eval(i,expr); ));

CUDA

template<class Expr, class obj> __global__
void ETapply(int N,obj *_odata,Expr Op)
{
int ss = blockIdx.x;
_odata[ss]=eval(ss,Op);

}
LatticeBinaryExpression<Op,T1,T2> temp = expr;
ETapply< decltype(temp), obj > <<<_osites,1>>>((int)_osites,this->_odata,temp);
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other code changes/comparisons

I OpenACC
I Need to specify device routines with #pragma acc routine. Defined in OFFLOAD.
I Need PGI’s Unified Virtual Memory (UVM) support for data management.
I Choose target at compile time

[GPU] pgc++ -acc -ta=tesla:managed --c++11 -O3 main.cc -o gpu.x
[CPU] pgc++ -acc -ta=multicore --c++11-O3 main.cc -o cpu.x

I OpenMP
I Similar to OpenACC, but no compiler UVM support yet. So code is not working yet.

I Jitify
I Use managed memory allocator for UVM support. Execution policy defined in main

program.
static const Location ExecutionSpaces[] = DEVICE;
policy = ExecutionPolicy(location);

I CUDA
I Customized allocator: aligned allocator for CPUs, managed allocator for GPUs.

#ifdef GPU
cudaMallocManaged((void **)&ptr, __n*sizeof(_Tp));

#elif defined(AVX512)
ptr = (pointer) _mm_malloc(__n*sizeof(_Tp), 64); //changes with the target architecture

#elif ...

I OFFLOAD macro needed for functions on both host and device
#ifdef __NVCC__
#define OFFLOAD __host__ __device__
#elif defined (_OPENACC)
#define OFFLOAD _Pragma(”acc routine seq”)
#else
#define OFFLOAD
#endif 39



su(3)xsu(3) streaming test

Lattice<Su3f> z(&grid);
Lattice<Su3f> x(&grid);
Lattice<Su3f> y(&grid);
for(int i=0;i<Nloop;i++) {

z=x*y;
}

I Performance comparison with default setting (no tuning of thread/block
numbers). NVIDIA GTX 1080 (Pascal Gaming Card)
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mapping simd data layout onto gpus

I Poor performance due to lack of memory coalescing with the AoS data layout
I Can be overcome by using a coalesced_ptr class (K. Clark)

I Transforms AoS into AoSoAoS
I Performance boost by a factor of 2

I Grid’s native SIMD vector layout can be used to ensure coalescence without
coalesced_ptr.

Grid: A next generation C++ library for data parallel QCD

Overdecomposed physical node
SIMD vector

Virtual nodes

Figure 2: A key idea is to overdecompose and then interleave elements from different virtual nodes in
adjacent SIMD lanes. After transformation it is simple to generate code such that one node performs the
work on N = 4 virtual nodes, each with a correspondingly reduced local volume.

2.3 Cshifting implementation

Circular shift of Grid lattice containers by an arbitrarily large distance in any dimension is
supported. For example, the following code performs a data parallel multiplication a distributed
fields B and C together and takes the y-derivative of C, with work being decomposed across MPI
ranks, OpenMP threads and SIMD lanes automatically.

LatticeColourMatrix A(Grid), B(Grid), C(Grid), dC_dy(Grid);

int Ydim = 1;

A = B

*

C;

dC_dy = 0.5

*

( Cshift(C,Ydim,+1) - Cshift(C,Ydim,-1) );

While, the SIMD efficiency of site local operations is clear in our scheme, for site non-local
operations such as a finite difference operator this is also true but less clear. The symmetry of a
cartesian mesh means that the neighbours of any element of one virtual node also align with the
neighbours of corresponding elements of other virtual. The code for processing N-virtual nodes
therefore looks identical to that for processing a single scalar node but the datum is simply N-fold
larger. For stencil connections that cross boundaries between sub-cells a permutation, is addi-
tionally required since for example a blue element of the result vector may need to reference a
red neighbour and vice versa, see Figure 3. These non-arithmetic steps are both efficient SIMD
operations, and are suppressed by the surface to volume ratio.

(A, B, C , D)
� �� �

virtual subnode

(E , F , G , H)
� �� �

virtual subnode

� (AE , BF , CG , DH)
� �� �

Packed SIMD

� (BF , CG , DH, AE)
� �� �

cshift bulk
�

(BF , CG , DH, EA)
� �� �

permute face

� (B, C , D,E)
� �� �

virtual subnode

(F , G , H,A)
� �� �

virtual subnode

Figure 3: Permutation, and all SIMD lane crossing overhead, is suppressed by the surface to volume ratio
in our interleaved virtual node scheme; we illustrate here a one-dimensional example of a cshift operation.
Only the interior three steps are performed in grid since this is the native, internal data layout – the exterior
diagrammatic representation as unpacked into virtual nodes is illustrative only.

2.4 Stencil support

A Cshift closes an expression template, to avoid complex implicit book keeping in expressions
such as a cshift of a cshift. It is wise to make it easy to implement high performance routines for

7

I Each GPU thread within a thread block processes one element of the vector.
Thread blocks map to outer sites.

Thread Blocks

Threads
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code snippets

I Since the top-level data structures are of vector types, some “hacking” is needed
to make different threads process different elements of the vector.

I Make each thread eval one element of the vector, extracted through extractS.
//C++14 and CUDA 9 needed to make this work
template<class obj> OFFLOAD inline auto evalS(const unsigned int ss, const Lattice<obj> arg,

const int tIdx) //-> decltype(typename obj::scalar_object)
{
typedef typename obj::scalar_object sObj;

auto sD = extractS<obj,sObj>(arg._odata[ss], tIdx);

return (sObj) sD;
}

I Put the results back to form the vector again after eval.
template<class Expr, class obj> __global__
void ETapply(int N,obj *_odata,Expr Op)
{
if (blockIdx.x < N) {

typedef typename obj::scalar_object sObj;

auto sD = evalS(blockIdx.x,Op,threadIdx.x);

mergeS(_odata[blockIdx.x], sD, threadIdx.x);

}
}

I Outer sites become thread blocks; inner sites become threads.
ETapply<decltype(temp), obj> < < <_osites,_isites> > > ((int)_osites,this->_odata,temp);
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su(3)xsu(3) performance

Same code. Performance saturates STREAM Triad results on multiple architectures.
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block size dependence

I How big do we need to make the blocks?
I Twice the AVX512 width (1024 bits) already saturates the performance.

Tests on NVIDIA Quadro GP100
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summary



summary

I LQCD’s regular grid structure is great for parallelization.
I The diverse hardware architectures that LQCD software has been optimized for
result in significant division of code bases.

I OpenMP is becoming more and more important for LQCD with the increasing
on-node parallelism.

I With the pursuit performance portability, OpenMP may give us a way to “Grand
Unification”.

What works for us:

I Simple (nested) parallel for loops nowadays indispensable.
I API calls provide more flexibility

What may work for us:

I simd: some recent work show that directive-guided compiler vectorization can
give good performance.

I task: used to overlap communication and computation.

What we still need:

I Better support for C++ GPU offloading.
I Complex c++ programming requires deep copy or UVM support for accelerator
offloading.
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