
Ernesto Su, Hideki Saito, Xinmin Tian
Intel Corporation

OpenMPCon 2017
September 18, 2017

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2

Legal Notice and Disclaimers
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING
OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

For more complete information about performance and benchmark results, visit Performance Test Disclosure

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar
performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Intel processor numbers are not a measure of performance.

Processor numbers differentiate features within each processor family, not across different processor families: Go to: Learn About Intel® Processor Numbers

Intel® Advanced Vector Extensions (Intel® AVX)* are designed to achieve higher throughput to certain integer and floating point operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a)
some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and
system configuration and you should consult your system manufacturer for more information.

*Intel® Advanced Vector Extensions refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512. For more information on Intel® Turbo Boost Technology 2.0, visit http://www.intel.com/go/turbo

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2014 Intel Corporation. All rights reserved . Intel, the Intel logo, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the
property of others.

http://www.intel.com/design/literature.htm
http://www.intel.com/benchmarks
http://www.intel.com/products/processor_number
http://www.intel.com/go/turbo

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3

Why can’t we do this seemingly simple thing? Financial code from
customers has this pattern, and we can’t vectorize it with simd

X x = …

#pragma omp simd linear(x:1) Error! x is not of integral type

for(int i=0; i<N; i++){

work(x);

x ++; // ++ is defined for class X

}

Motivation

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

4

Inductions Beyond the linear Clause

linear : limited to the + operator on integral types

We want to extend OpenMP to support

 More operators

– Other built-in operators: -, ×, and ÷

– User-defined operators

 More data types

– Other built-in data types: float, double, etc.

– User-defined types, including non-POD types

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5

Agenda

 Induction overview

 The induction clause

– Syntax

– Example: polynomial evaluation

 User-defined induction (UDI): the declare induction construct

– Syntax

– Parallelization example

– Vectorization example

 Conclusions

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

6

Induction Overview

 Recursive form: xi = xi-1 s

– the inductive operator (or “inductor”)

– i index (zero-normalized)

– s step expression

– x0 initial value

 Expansion: xi = x0 s s … s (i times)

 Collection: often the i s-terms can be “collected” into si = s i

– the collective operator (or “collector”)

– si collective step expression

 Closed form: when collection is possible, we can express the induction with
the closed form xi = x0 (s i)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

7

Induction of Basic Arithmetic Operations

 Recursive form s i Closed form

+ xi = xi-1 + s s * i xi = x0 + s * i

- xi = xi-1 s s * i xi = x0 s * i

* xi = xi-1 * s si xi = x0 * si

/ xi = xi-1 / s si xi = x0 / si

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

8

Proposal: induction Clause

induction(induction-id : var-list : step)

 To be used with the OpenMP loop, distribute, and simd constructs

 induction-id : can be a built-in op (+, -, *, /) or user-defined

 var-list : one or more variables. Intergral or FP for built-in operators.
Can be of non-POD types for user-defined operators.

 step : the step expression

 Examples
– induction(+ : x, y : 1) is equivalent to linear(x, y) if x, y are integral
– induction(* : x : s) describes the nonlinear induction xi = xi-1 * s
– induction(foo : x : s) uses a user-defined induction operator “foo”;

x and s can be of different non-POD types

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

9

Example: Evaluating a Polynomial

Compute the value of 𝑖=0
𝑁 𝑐𝑖 𝑥

𝑖

float c[N]; // the coefficients

float s = x; // step is the value of x for which

// to evaluate the polynomial

float xi = 1.0; // x^i; initial value x^0 == 1

float value = 0.0; // accumulator for the result

#pragma omp simd reduction(+:value) induction(* : xi : s)

for(i=0; i<=N; i++){

value += c[i] * xi;

xi *= s;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

10

Going Beyond Built-in Types and Operators

The user needs to specify the following

 Type of induction variable

 Type of the step expression

 Inductive operator

 Collective operator (optional)

– Allows computation, in constant time, of the initial value of the induction variable
for each thread or SIMD lane by using the closed-form

– Omitting the collector may negatively affect performance

 The proposed syntax has a form similar to UDR’s declare reduction construct

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

11

User-Defined Reduction (UDR) Recap

#pragma omp declare reduction (reduction-id : type-list : combiner)
[initializer(init-expr)]

 reduction-id : name of this reduction operation

 type-list : list of type specifiers for the reduction variables

 combiner : expression to combine partial results of the given type(s)

– Two special variables: omp_in and omp_out

– Example1: omp_out = omp_out + omp_in

– Example2: foo(&omp_out, omp_in)

 init-expr:

– Two special variables: omp_priv and omp_orig

– Example: omp_priv = { MAX_INT, MAX_INT }

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

12

Proposal: User-Defined Induction (UDI)

#pragma omp declare induction (induction-id : induction-type :
step-type : inductor) [collector(collector)]

 induction-id : identifier for the operation, to be used in an induction clause

 induction-type : type specifier for the induction variables

 step-type : type specifier for the step expression

 inductor : specifies the inductive operation: x = x s
– omp_out represents x

– omp_step represents s

– C++ Example: omp_out = omp_out + omp_step, where + is overloaded

– C Example: add(&omp_out, omp_step)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

13

Proposal: User-Defined Induction (UDI)
(cont)

 collector :
– omp_step represents s

– omp_index represents the logical, zero-normalized index i

– C++ Example: omp_step = omp_step * omp_index, where * may be overloaded

– C Example: cs(&omp_step, omp_index)

 If collector is available, then the closed form is xi = x0 (s i)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

14

class A; // class of induction variables
class S; // class of the step expression

#pragma omp declare induction (op : A : S : \

omp_out = omp_out + omp_step) \

collector (omp_step = omp_step * omp_index)

// AA+S and SS*int must be defined

...

A a; S s; // initialized by constructors

...

#pragma omp parallel for induction(op : a : s)

for(int i=0; i<N; i++) { work(a); a=a+s; }

Example1 (Parallelization): Source

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

15

void inductor(A *omp_out_ptr, S *omp_step_ptr) {

A_add_S(omp_out_ptr, omp_step_ptr);

}

void collector(S *omp_step_ptr, int omp_index) {

S_mult_int(omp_step_ptr, omp_index);

}

Example1: Compiler Front-End Output

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

16

// ...Call runtime to obtain lb,ub for each thread...

firstprivatize(a,s); // privatized and copy-constructed in each thr

collector(&s, lb); // Use the closed form to find a’s initial

inductor(&a, &s) // value for each thread in const time

for(int i=lb; i<ub; i++) {

work(a);

a = a + s;

}

lastprivatize(a); // lastprivate copy-out for a

Example1: Threaded Pseudocode

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

17

class A; // class of induction variables
class S; // class of the step expression

#pragma omp declare induction (op : A : S : \

omp_out = omp_out + omp_step) \

collector (omp_step = omp_step * omp_index)

// AA+S and SS*int must be defined

...

A a; S s; // initialized by constructors

...

#pragma omp simd induction(op : a : s)

for(int i=0; i<N; i++) { work(a); a=a+s; }

Example2 (Vectorization): Source

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

18

A a; S s; // original scalar non-POD variables

A aa[VL] = bcast(a); // initialize vector for a

S ss[VL] = bcast(s); // initialize vector for s

int idx[VL] = {VL-1,VL-2,…,1,0};

simd_collector(ss, idx); // Get vector step ss[:]=idx[:]*ss[:]

simd_inductor(aa, ss); // Get initial vector aa[:]=aa[:]+ss[:]

S t = s;

collector(&t, VL); // Use collector to create a vector step

ss[:]=bcast(t); // ss[:] = bcast(s * VL)

for(int i=0; i<N; i+=VL) {

simd_work(aa[:]);

aa[:] = aa[:] + ss[:];

}

// copy out last aa to a

Example2: Vectorized Pseudocode

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

19

Compiler Implementation Status

 Intel C/C++ compiler

– Front-end and IR: done

– Parallelizer and Vectorizer back-end: In progress

 Intel Fortran compiler

– Front-end: TBD

– Back-end (shared with C/C++)

 Runtime

– No changes expected

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

20

Conclusions

 Real applications demand OpenMP support for induction
beyond that provided by the linear clause

 The proposed declare induction construct and induction
clause will support

– More induction operations, including user-defined operations

– More data types, including user-defined class types

 Examples were presented

