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Why can’t we do this seemingly simple thing? Financial code from 
customers has this pattern, and we can’t vectorize it with simd

X x = …

#pragma omp simd linear(x:1)  Error! x is not of integral type

for(int i=0; i<N; i++){

work(x);

x ++; // ++ is defined for class X

}

Motivation
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Inductions Beyond the linear Clause

linear :  limited to the + operator on integral types

We want to extend OpenMP to support

 More operators

– Other built-in operators:  -, ×, and ÷

– User-defined operators

 More data types

– Other built-in data types: float, double, etc.

– User-defined types, including non-POD types
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Agenda

 Induction overview

 The induction clause

– Syntax

– Example: polynomial evaluation

 User-defined induction (UDI): the declare induction construct

– Syntax

– Parallelization example 

– Vectorization example

 Conclusions 
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Induction Overview

 Recursive form: xi = xi-1  s 

–  the inductive operator (or “inductor”)

– i index (zero-normalized)

– s step expression

– x0 initial value

 Expansion: xi = x0  s  s …  s  (i times)

 Collection: often the i s-terms can be “collected” into si = s  i

–  the collective operator (or “collector”)

– si collective step expression

 Closed form: when collection is possible, we can express the induction with 
the closed form xi = x0  ( s  i )
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Induction of Basic Arithmetic Operations

 Recursive form s  i Closed form

+ xi = xi-1 + s s * i xi = x0 + s * i

- xi = xi-1  s s * i xi = x0  s * i

* xi = xi-1 * s si xi = x0 * si

/ xi = xi-1 / s si xi = x0 / si
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Proposal: induction Clause

induction( induction-id : var-list : step )

 To be used with the OpenMP loop, distribute, and simd constructs

 induction-id : can be a built-in op (+, -, *, /) or user-defined

 var-list : one or more variables. Intergral or FP for built-in operators. 
Can be of non-POD types for user-defined operators.

 step : the step expression

 Examples
– induction( + : x, y : 1 ) is equivalent to linear( x, y ) if x, y are integral
– induction( * : x : s ) describes the nonlinear induction  xi = xi-1 * s
– induction( foo : x : s ) uses a user-defined induction operator “foo”;

x and s can be of different non-POD types
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Example: Evaluating a Polynomial

Compute the value of   𝑖=0
𝑁 𝑐𝑖 𝑥

𝑖

float c[N];        // the coefficients

float s = x;       // step is the value of x for which

// to evaluate the polynomial

float xi = 1.0;    // x^i; initial value x^0 == 1

float value = 0.0; // accumulator for the result

#pragma omp simd reduction(+:value) induction(* : xi : s)

for(i=0; i<=N; i++){

value += c[i] * xi;

xi *= s;

}
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Going Beyond Built-in Types and Operators

The user needs to specify the following

 Type of induction variable

 Type of the step expression

 Inductive operator

 Collective operator (optional)

– Allows computation, in constant time, of the initial value of the induction variable 
for each thread or SIMD lane by using the closed-form

– Omitting the collector may negatively affect performance

 The proposed syntax has a form similar to UDR’s declare reduction construct
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User-Defined Reduction (UDR) Recap

#pragma omp declare reduction ( reduction-id : type-list : combiner ) 
[ initializer( init-expr ) ]

 reduction-id : name of this reduction operation

 type-list : list of type specifiers for the reduction variables

 combiner : expression to combine partial results of the given type(s)

– Two special variables: omp_in and omp_out

– Example1:  omp_out = omp_out + omp_in

– Example2:  foo(&omp_out, omp_in)

 init-expr:

– Two special variables: omp_priv and omp_orig

– Example:  omp_priv = { MAX_INT, MAX_INT }
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Proposal: User-Defined Induction (UDI)

#pragma omp declare induction ( induction-id : induction-type :
step-type : inductor ) [collector( collector )]

 induction-id : identifier for the operation, to be used in an induction clause

 induction-type : type specifier for the induction variables

 step-type : type specifier for the step expression

 inductor  : specifies the inductive operation:  x = x  s
– omp_out represents x

– omp_step represents s

– C++ Example:  omp_out = omp_out + omp_step, where + is overloaded

– C Example:  add(&omp_out, omp_step)
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Proposal: User-Defined Induction (UDI)
(cont)

 collector  :
– omp_step represents s

– omp_index represents the logical, zero-normalized index i

– C++ Example:  omp_step = omp_step * omp_index, where * may be overloaded

– C Example:  cs(&omp_step, omp_index)

 If collector is available, then the closed form is   xi = x0  ( s  i )
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class A; // class of induction variables
class S; // class of the step expression

#pragma omp declare induction ( op : A : S : \

omp_out = omp_out + omp_step ) \

collector ( omp_step = omp_step * omp_index )

// AA+S and SS*int must be defined

...

A a; S s;  // initialized by constructors

...

#pragma omp parallel for induction( op : a : s )

for(int i=0; i<N; i++) { work(a); a=a+s; }

Example1 (Parallelization): Source
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void inductor(A *omp_out_ptr, S *omp_step_ptr) {

A_add_S(omp_out_ptr, omp_step_ptr);

}

void collector(S *omp_step_ptr, int omp_index) {

S_mult_int(omp_step_ptr, omp_index);

}

Example1: Compiler Front-End Output
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// ...Call runtime to obtain lb,ub for each thread...

firstprivatize(a,s); // privatized and copy-constructed in each thr

collector(&s, lb);   // Use the closed form to find a’s initial

inductor(&a, &s)     //    value for each thread in const time

for(int i=lb; i<ub; i++) {

work(a);

a = a + s;

}

lastprivatize(a); // lastprivate copy-out for a

Example1: Threaded Pseudocode
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class A; // class of induction variables
class S; // class of the step expression

#pragma omp declare induction ( op : A : S : \

omp_out = omp_out + omp_step ) \

collector ( omp_step = omp_step * omp_index )

// AA+S and SS*int must be defined

...

A a; S s;  // initialized by constructors

...

#pragma omp simd induction( op : a : s )

for(int i=0; i<N; i++) { work(a); a=a+s; }

Example2 (Vectorization): Source
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A a; S s; // original scalar non-POD variables

A aa[VL] = bcast(a); // initialize vector for a

S ss[VL] = bcast(s); // initialize vector for s

int idx[VL] = {VL-1,VL-2,…,1,0};

simd_collector(ss, idx); // Get vector step ss[:]=idx[:]*ss[:]

simd_inductor(aa, ss); // Get initial vector aa[:]=aa[:]+ss[:]

S t = s;

collector(&t, VL); // Use collector to create a vector step

ss[:]=bcast(t); //   ss[:] = bcast( s * VL )

for(int i=0; i<N; i+=VL) {

simd_work(aa[:]);

aa[:] = aa[:] + ss[:];

} 

// copy out last aa to a

Example2: Vectorized Pseudocode
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Compiler Implementation Status

 Intel C/C++ compiler

– Front-end and IR: done

– Parallelizer and Vectorizer back-end:  In progress

 Intel Fortran compiler

– Front-end: TBD

– Back-end (shared with C/C++)

 Runtime

– No changes expected
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Conclusions

 Real applications demand OpenMP support for induction 
beyond that provided by the linear clause

 The proposed declare induction construct and induction
clause will support

– More induction operations, including user-defined operations

– More data types, including user-defined class types

 Examples were presented




