
A User-defined Schedule for
OpenMP

Vivek Kale

University of Southern California/Information Sciences Institute

William D. Gropp

University of Illinois at Urbana-Champaign

Overview

• Need to allow for rapid development of novel loop scheduling
strategies.

• We suggest giving users of OpenMP applications control of the loop
scheduling strategy to do so.

• We call the scheme user-defined scheduling and propose the scheme
as an addition to OpenMP.

Need Novel Loop Scheduling Schemes in OpenMP

• Supercomputer architectures and applications are changing.
• Large number of cores per node.
• Speed variability across cores.
• Dynamic behavior in applications themselves.

• So, we need new methods of distributing an application’s
computational work to a node’s cores1, specifically to schedule an
application’s parallelized loop’s iterations to cores.

• Such methods need to
• Ensure data locality and reduce synchronization overhead while maintaining

load balance2.
• Be aware of inter-node parallelism handled by libraries such as MPICH3.
• Adapt during an application’s execution.

1: R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. Journal of ACM 46(5):720–748, 1999.
2: S. Donfack, L. Grigori, W. D. Gropp, and V. Kale. Hybrid Static/Dynamic Scheduling for Already Optimized Dense Matrix Factorizations. In IEEE International Parallel and Distributed Processing Symposium, IPDPS
2012, Shanghai, China, 2012.
3: E. Lusk, N. Doss, and A. Skjellum. A High-performance, Portable Implementation of the Message Passing Interface Standard. Parallel Computing, 22:789–828, 1996.

Utility of Novel Strategies Shown

• The utility of novel strategies is shown through data in published work
by V. Kale et al 1,2 and others.

• For example, static-dynamic scheduling mixed strategy with an
adjustable static fraction.

• Motivation: to limit the overhead of dynamic scheduling, while
handling imbalances, such as those due to noise.

1: S. Donfack, L. Grigori, W. D. Gropp, and V. Kale. Hybrid Static/Dynamic Scheduling to Improve Performance of Already Optimized Dense Matrix Factorizations, IPDPS 2012.
2: V. Kale, S. Donfack, L. Grigori, and W. D. Gropp. Lightweight Scheduling for Balancing the Tradeoff Between Load Balance and Locality 2014.

CALU using static scheduling (top) and fd =
0.1 (bottom) with 2-level block layout run
on AMD Opteron 16 core node.

Diagram of static (top) and mixed
static/dynamic scheduling (bottom) where fd
is the dynamic fraction.

13

Scheduling CALU’s Task Dependency Graph

• Static scheduling
+ Good locality of data - Ignores OS jitter

White: idle time

Scheduling for Slack

• Adjust dynamic fraction per-process.

• Use history of MPI communication time from prior invocations of loop
predict MPI communication time for this loop invocation.

• Calculate new static fraction based on the MPI communication time.

Need to Support A User-defined Schedule in OpenMP

• Practice of burying all of the scheduling strategy inside an OpenMP
implementation, with little visibility in application code beyond the use
of keywords such as ’dynamic’ or ’guided’, isn’t adequate for this
purpose.

• OpenMP’s implementations, e.g., GCC’s libgomp 1 and LLVM’s OpenMP
library 2 are difficult to change, which can hinder development of loop
scheduling strategies at a rapid pace.

1. Documentation for GCC’s OpenMP library. https://gcc.gnu.org/onlinedocs/libgomp/ .
2. Documentation for LLVM’s OpenMP library. http://openmp.llvm.org/Reference.pdf/ .

https://gcc.gnu.org/onlinedocs/libgomp/
http://openmp.llvm.org/Reference.pdf/

Scheduling Code of libgomp

• The scheduling code in libgomp, for example, supports the static,
dynamic, and guided schedules naturally.

• However, its code structure can’t accommodate the number and
sophistication of the strategies that we would like to explore.

Adding a user-defined schedule into OpenMP libraries:
• is possible with effort for a given library.

• must be done differently for each library.

Reasons for User-defined Schedules

• Flexibility.
• Given the variety of OpenMP implementations, having a standardized way of defining a user-level

strategy provides flexibility to implement scheduling strategies for OpenMP programs easily and
effectively.

• Emergence of Threaded Runtime Systems.
• Emergence of threaded libraries such as Argobots1 and QuickThreads2 argues in favor of a flexible

specification of scheduling strategies also.

• Note that keywords auto and runtime aren’t adequate.
• Specifying auto or runtime schedules isn’t sufficient because they don’t allow for user-level scheduling.

1. S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, A. Castello, D. Genet, T. Herault, P. Jindal, L. Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, and P. H. Beckman.
Argobots: A lightweight threading tasking framework. 2016.

2. D. Keppel. Tools and techniques for building fast portable threads packages. Technical Report UWCSE 93-05-06, University of Washington Department of Computer Science and Engineering, May 1993.

Specification of User-defined Scheduling Scheme

• We aim to specify a user-defined scheduling scheme within the OpenMP
standard1 .

• The scheme should accommodate an arbitrary user-defined scheduler.

• These are the elements required to defined a scheduler.
• Scheduler-specific data structures.

• History record.

• Specification of scheduling behavior of threads.

1. OpenMP Application Programming Interface. November 2015.

Potential Scheduling Data Structures

• The strategies should be allowed to use a subset or combination of:
• Shared data structures.

• Low-overhead steal-queues.

• Exclusive queues meant for each thread.

• Shared queues from which multiple threads can dequeue work, each
representing a chunk of loop iterations.

History Tracking from Prior Invocations

1. To facilitate the ability to learn from recent history, e.g., values of
slack in MPI communication1,2 from previous outer iterations, the
scheduling scheme should allow for passing a call-site specific
history-tracking object3 to the scheduler.

2. Examples of history information, i.e., attributes to track via history
objects:
• Previous values of dynamic fraction.
• Iteration-to-core affinities.
• Runtime performance profiles.

1. A. Faraj, P. Patarasuk, and X. Yuan. A Study of Process Arrival Patterns for MPI Collective Operations. In Proceedings of the 2006 ACM / IEEE Conference on Supercomputing, SC
’06, Tampa, FL, USA, 2006. ACM.

2. B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and T. Bletsch. Adagio: Making DVS Practical for Complex HPC Applications. In Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09, pages 460–469, Yorktown Heights, NY, USA. 2009. ACM.

3. V. Kale, S. Donfack, L. Grigori, and W. D. Gropp. Lightweight Scheduling for Balancing the Tradeoff Between Load Balance and Locality 2014.

Specification of Behavior of Threads

• The scheduling behaviors of the main thread and the other threads
need to be specified.
• Specified either via

• Function pointers

• Declaratively

• Such specification must be done while preserving generality
• Scheduling strategies should be able to deal with the loop’s iteration space in a

controlled and flexible manner.

Example: Staggered Loop Scheduling

• Staggered loop scheduling strategy
• A tunable combination of statically scheduled and dynamically scheduled loop

iterations1.

• The dynamic iterations still execute in consecutive order on a thread to the
extent possible2.

• The strategy minimizes cache traffic and synchronization overhead
while maximizing load balance and enhancing spatial locality.

Iteration space of a threaded computation region when using technique of staggered mixed static/dynamic scheduling.

1: S. Donfack, L. Grigori, W. D. Gropp, and V. Kale. Hybrid Static/Dynamic Scheduling to Improve Performance of Already Optimized Dense Matrix Factorizations, IPDPS 2012.
2: V. Kale, A. P. Randles, V. Kale, and W. D. Gropp. Locality-Optimized Scheduling for Improved Load Balancing on SMPs. In Proceedings of the 21st European MPI Users’ Group
Meeting Conference on Recent Advances in the Message Passing Interface, volume 0, pages 1063–1074. Association for Computing Machinery, 2014.

Work scheduled dynamically

Work scheduled statically

Example: Library to Support Staggered Scheduling
• In earlier work1, a loop scheduling library that supports this “staggered” scheduling

strategy was implemented.

• It was implemented within an OpenMP parallel region by enclosing the loop body with
macros FORALL_BEGIN()and FORALL_END()with appropriate parameters.

1: V. Kale, A. P. Randles, V. Kale, and W. D. Gropp. Locality-Optimized Scheduling for Improved Load Balancing on SMPs. In Proceedings of the 21st European MPI Users’
Group Meeting Conference on Recent Advances in the Message Passing Interface, volume 0, pages 1063–1074. Association for Computing Machinery, 2014.

1. The scheduling strategy’s name and associated parameters are specified in the parameters of the macro.
2. Both macros invoke library functions corresponding to the strategy’s name as specified in the macro call.
The macro’s parameters are passed to the user-defined scheduler functions.

int start, end = 0;

static LoopTimeRecord* ltr;

double fd = 0.3;

#pragma omp parallel

{ int tid = omp_get_thread_num();

int numThrds = omp_get_num_threads();

FORALL_BEGIN(sds,tid,numThrds,0,n,start,end,fd)

for(int i=start;i<end;i++)

c[i] += a[i]*b[i];

FORALL_END(sds,tid,start,end)

}

Example: Library to Support Staggered Scheduling
• In earlier work1, a loop scheduling library that supports this “staggered” scheduling

strategy was implemented.

• It was implemented within an OpenMP parallel region by enclosing the loop body with
macros FORALL_BEGIN()and FORALL_END()with appropriate parameters.

1: V. Kale, A. P. Randles, V. Kale, and W. D. Gropp. Locality-Optimized Scheduling for Improved Load Balancing on SMPs. In Proceedings of the 21st European MPI Users’
Group Meeting Conference on Recent Advances in the Message Passing Interface, volume 0, pages 1063–1074. Association for Computing Machinery, 2014.

1. The scheduling strategy’s name and associated parameters are specified in the parameters of the macro.
2. Both macros invoke library functions corresponding to the strategy’s name as specified in the macro call.
The macro’s parameters are passed to the user-defined scheduler functions.

int start, end = 0;

static LoopTimeRecord* ltr;

double fd = 0.3;

#pragma omp parallel

{ int tid = omp_get_thread_num();

int numThrds = omp_get_num_threads();

FORALL_BEGIN(sds,tid,numThrds,0,n,start,end,fd)

for(int i=start;i<end;i++)

c[i] += a[i]*b[i];

FORALL_END(sds,tid,start,end)

}

FORALL_BEGIN(strat, …) macro expansion
strat_## LoopStart(..&start, &end, ..);
do (loop not done)

{

FORALL_END(strat, …) macro expansion:
}

while (strat_## LoopNext(… &start, &end, ..));
barrier;

Limitations of Library

• This macro-based approach is of limited utility,
• Useful to demonstrate the advantages of the scheduling strategy.
• But, unable to use compiler support for features such as reductions.

• We need to propose an approach that
• Eliminates these limitations.
• Leads to concise code.

Proposal for User-defined Schedule in OpenMP
• We propose a user-defined scheduling scheme that is an adaptation of

the above macro-based scheme.

• The proposed API used for a simple code is illustrated below.

double dynamicFraction = 0.3;

static LoopTimeRecord* ltr; // for history.

int chunkSize = 4;

#pragma omp parallel for schedule(user, staggered:chunkSize:dynamicFraction:ltr)

for(int i = 0; i < n; i++)

c[i] = a[i]*b[i];

• The first parameter of the clause ’schedule’ specifies a new schedule kind user.
• The second parameter specifies the scheduling strategy’s name staggered,

optionally with the strategy-specific parameters.

Implementation of User-defined Schedule

• When a user specifies a schedule kind ’user’ and a strategy named X
• They need to link a library that defines functions:

• X_loopStart(), X_loopNext() and X_init().

• X_init()allows a user-level scheduler to allocate and initialize its data
structures that are to be used commonly across parallel loops that use X.

• The functions X_loopStart()and X_loopNext()determine a loop’s
indices that a thread should work on based on the parameter values for the
scheduling strategy and of the loop.

• As long as one is allowed to define these functions, one can implement a
user-defined scheduler.

• Every thread should call X_loopNext() repeatedly.

Every thread executes when starting a
new loop:
…
X_loopStart();
do X_loopNext(); until done;
// done flag is set by the user-defined
// scheduler functions

sd_LoopStart():
if I am the master thread,

- set up a data structure loopParams, along with a lock;
- signal other threads to start;

else
- wait for the signal from master thread;

- use the shared loopParams data structure to calculate my static iterations and
execute loop_body for that range;

sd_LoopNext():
lock loopParams; extract a chunk to work on;
unlock loopParams;
if (no chunk available)

wait for barrier; done=1;
else

execute loop_body for the extracted chunk;

Static/dynamic Scheduling Using a Shared Data Structure

sd2_LoopStart():
if I am the master thread

— set up a data structure loopParams with loop parameters;
— enqueue a single entry corresponding to dynamic range of iterations

into thread 0’s steal queue;
— signal other threads to start;

else
— wait for the signal from master thread;

- Use the shared data structure to calculate my static iterations and execute
loopBody for that range;

sd2_LoopNext():
- nextRange = myQueue.dequeue();
if (nextRange == NULL) nextRange = steal(random_neighbor);
if (nextRange != NULL)

L = nextRange->low; U = nextRange->high;
if ((U-L) > Threshold)

- split the range in 2, enqueue them in my steal queue;
else

- execute loop body for iterations L:U;
- update count of iterations completed to set the “done” flag when

done;

An Alternative Implementation of Static/Dynamic Strategy Using Steal Queues for Dynamic
Iterations

staggered_LoopStart():
if I am the master thread

- set up a data structure loopParams;
- signal other threads to start;

else
- wait for the signal from master thread;

- enqueue entries corresponding to chunks of my dynamic range of iterations
into my thread’s steal queue;

- calculate my static iterations and execute loopBody for that range;staggered_LoopNext():
nextRange = myQueue.dequeue();
if (nextRange == NULL) nextRange = steal(random_neighbor);
if (nextRange != NULL)

- L = nextRange->low; U = nextRange->high;
- execute loop body for my iterations L:U;
- update count of iterations completed to set the “done” flag when done;

An Implementation of Staggered Static/Dynamic Strategy

Discussion of API’s details

• We have sketched above a syntax for the API for user-level schedulers.
• However, we expect that the API’s details will be worked out with the

community’s consensus.

• Note that there is a precedent for adding user-defined functions in
OpenMP standard.
• The combiner function in user-defined reductions.

Summary

• Need for experimentation with sophisticated loop scheduling
strategies.

• OpenMP community should discuss how to allow flexible specification
of such strategies in a user’s code and how to design a user-level
scheduler library so that it can be portably used with any conforming
OpenMP implementation.

• Supporting user-defined schedulers in this way will facilitate rapid
development of scheduling strategies.

• I hope the experts will discuss these ideas at this conference.

Acknowledgements: University of Southern California/ISI’s Technical New Directions program.

References
1. Documentation for GCC’s OpenMP library. https://gcc.gnu.org/onlinedocs/libgomp/ .

2. Documentation for LLVM’s OpenMP library. http://openmp.llvm.org/Reference.pdf/ .

3. OpenMP Application Programming Interface. November 2015.

4. E. Ayguad, B. Blainey, R. Duran, J. Labarta, F. Martnez, X. Martorell, and R. Silvera. Is the Schedule Clause Really Necessary in OpenMP? In
Proceedings of the International Workshop on OpenMP Applications and Tools 2003, volume 2716 of Lecture Notes in Computer Science, pages 69–
83, Toronto, Canada, jun 2003.

5. R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. Journal of ACM 46(5):720–748, 1999.

6. S. Donfack, L. Grigori, W. D. Gropp, and V. Kale. Hybrid Static/Dynamic Scheduling for Already Optimized Dense Matrix Factorizations. In IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China, 2012.

7. A. Faraj, P. Patarasuk, and X. Yuan. A Study of Process Arrival Patterns for MPI Collective Operations. In Proceedings of the 2006 ACM / IEEE
Conference on Supercomputing, SC ’06, Tampa, FL, USA, 2006. ACM.

8. V. Kale, S. Donfack, L. Grigori, and W. D. Gropp. Lightweight Scheduling for Balancing the Tradeoff Between Load Balance and Locality 2014.

9. V. Kale, A. P. Randles, V. Kale, and W. D. Gropp. Locality-Optimized Scheduling for Improved Load Balancing on SMPs. In Proceedings of the 21st
European MPI Users’ Group Meeting Conference on Recent Advances in the Message Passing Interface, volume 0, pages 1063–1074. Association for
Computing Machinery, 2014.

10. D. Keppel. Tools and techniques for building fast portable threads packages. Technical Report UWCSE 93-05-06, University of Washington
Department of Computer Science and Engineering, May 1993.

11. E. Lusk, N. Doss, and A. Skjellum. A High-performance, Portable Implementation of the Message Passing Interface Standard. Parallel Computing,
22:789–828, 1996.

12. B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and T. Bletsch. Adagio: Making DVS Practical for Complex HPC Applications. In
Proceedings of the 23rd International Conference on Supercomputing, ICS ’09, pages 460–469, Yorktown Heights, NY, USA. 2009. ACM.

13. S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, A. Castello, D. Genet, T. Herault, P. Jindal, L. Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E.
Meneses, M. Snir, Y. Sun, and P. H. Beckman. Argobots: A lightweight threading tasking framework. 2016.

https://gcc.gnu.org/onlinedocs/libgomp/
http://openmp.llvm.org/Reference.pdf/

Thanks.

