
Improving Scalability and Accelerating Petascale
Turbulence Simulations Using OpenMP

M. P. Clay1, D. Buaria2, P. K. Yeung1

E-mail: mclay6@gatech.edu

1Georgia Institute of Technology
2Max Planck Institute for Dynamics and Self-Organization

Supported by NSF and SMART (DoD) Program
NCSA Blue Waters (NSF PRAC) and OLCF Titan (INCITE)

OpenMP Developers Conference
Stony Brook University, NY, September 18-20, 2017

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 1/28

Outline

1 Introduction

2 Algorithms for Homogeneous Computing Environments

3 Algorithms for Heterogeneous Computing Environments

4 Conclusions

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 2/28

Outline

1 Introduction

2 Algorithms for Homogeneous Computing Environments

3 Algorithms for Heterogeneous Computing Environments

4 Conclusions

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 3/28

Introduction and Background

Who are we, and how do we operate?
High performance computing (HPC) end users, i.e., domain scientists.
Learn how to use OpenMP by attending workshops, reading books and
the standard, and bugging consultants and compiler developers.

What are we interested in computing? (more on the next two slides)
Turbulent fluid flows and turbulent mixing processes.
Simplified flow geometries to focus on the fundamental issues.

What are our objectives when using OpenMP?
Homogeneous computing: can we add OpenMP to improve scalability
of an MPI code? How should we use the threads?
Heterogeneous computing: can we accelerate the computations while
still maintaining good scalability to production problem sizes?

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 4/28

Turbulence as a Grand Challenge in HPC

Turbulence is ubiquitous in nature and engineering
Multiscale problem: unsteady fluctuations in 3-D space and time
Wide range of scales requires massive grids: 81923 (Yeung et al.) and
122883 (Ishihara et al.) current state of the art for the velocity field.

Figure: Images (from wikipedia) of (left) turbulent flow around a submarine and
(right) a turbulent jet.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 5/28

Challenges Facing Simulations of Turbulent Mixing

When the scalar is weakly-diffusive (e.g., salinity in the ocean),
resolution requirements for scalar are stricter than the velocity field.

Figure: Scalar fluctuations for (left) a low-diffusivity scalar and (right) a scalar
with even lower diffusivity in same (statistically) turbulence.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 6/28

A Dual-Grid Dual-Scheme Approach

Velocity field: coarse grid, N-S equations, Fourier pseudo-spectral scheme
Scalar fluctuations (main interest) on finer grid (Gotoh et al., JCP 2012)

∂θ/∂t + u · ∇θ = D∇2θ − u · ∇〈Θ〉
I Derivatives via eighth-order combined compact finite differences (CCD)
I Interpolate velocity from coarse grid to fine grid for advection terms

Velocity Field Scalar Field

Interpolation

For our simulations, scalar grid is finer than the velocity grid by a factor
of 8 in each direction =⇒ computational cost dominated by scalar

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 7/28

Parallel Implementation for Weakly-Diffusive Scalars

Disjoint groups of processors for the two fields (Clay et al. CPC 2017)
To form advective terms, send well-resolved velocity field to scalar
communicator, and perform tricubic interpolation
Overlap inter-communicator transfer with computations for scalar

x1

x2x3 SEND

SEND

Velocity Field
Computation

SCATTER

SCATTER

Scalar Field
Computation

Our focus here is on how OpenMP is used for the scalar field
computations appearing on the right (the larger computation).

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 8/28

Outline

1 Introduction

2 Algorithms for Homogeneous Computing Environments

3 Algorithms for Heterogeneous Computing Environments

4 Conclusions

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 9/28

CCD Scheme and Opportunities to Improve Scalability

Application of the CCD scheme is the most expensive part of the code
Extract a kernel to focus on the scalability and performance of CCD

Scheme is implicit: all points along grid line coupled
Parallel algorithm (Nihei et al. 2003) to solve system w/o transposes

Op. Operation Summary
A Fill ghost layers for scalar field with SEND and RECV operations
B Form right-hand-side of linear system and obtain solution
C Pack and distribute data for reduced system with MPI_ALLTOALL
D Unpack data and solve reduced linear system
E Pack and distribute data for final solution with MPI_ALLTOALL
F Unpack data and finalize solution of CCD linear system

Operations for three coordinate directions are independent
I Try to overlap communication with computation
Reduce communication requirements (e.g., number of ghost layers) by
using OpenMP threads in favor of MPI processes
Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 10/28

Dedicated Communication Threads with OpenMP

Initial attempts to improve scalability, and potential problems:
Only loop-level OpenMP: many threads idle during communication
Non-blocking MPI: machine-dependent performance (Hager 2011)

Explicitly overlap communication and computation by dedicating
thread(s) to each respective operation (Rabenseifner 2003)

Still operate in MPI_THREAD_FUNNELED mode: adjust the number of
communication threads by changing the number of MPI processes

Overcome challenges when using dedicated communication threads:
1 Enforcing the correct sequence of operations in the CCD scheme
2 Shared memory synchronization between the different threads
3 Presumably we need more computation threads than communication

threads: how to work-share the computations?

Use OpenMP locks and nested parallelism.
Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 11/28

Getting the Routine Started: Setting the OpenMP Locks

Perform an initial comm. call, and initialize one lock for each direction.
Always start with two threads: one for comm., one for comput.
Make sure locks are properly set before performing any operations.

COMMUNICATE x1 [A1]

CALL OMP INIT LOCK(x1,x2,x3)

CALL OMP SET NUM THREADS(2)

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(tid,test) SHARED(x1,x2,x3,nth)

tid=OMP GET THREAD NUM()

tid=0 tid=1

CALL OMP SET LOCK(x2)

CALL OMP SET LOCK(x3)

! Spin until the x1 lock is set.

test=.TRUE.

DO WHILE(test)

test=OMP TEST LOCK(x1)

IF (test) CALL OMP UNSET LOCK(x1)

END DO

COMMUNICATE x2 [A2]

CALL OMP UNSET LOCK(x2)

COMMUNICATE x3 [A3]

CALL OMP UNSET LOCK(x3)

CALL OMP SET LOCK(x1)

COMMUNICATE x1 [C1]

CALL OMP UNSET LOCK(x1)

CALL OMP SET LOCK(x2)

COMMUNICATE x2 [C2]

CALL OMP UNSET LOCK(x2)

REST OF ALGORITHM

CALL OMP SET NUM THREADS(nth-1)

!$OMP PARALLEL

!$OMP MASTER

CALL OMP SET LOCK(x1)

! Spin until the x2 lock is set.

! Spin until the x3 lock is set.

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x1; !$OMP END DO

!$OMP MASTER

CALL OMP SET LOCK(x2)

CALL OMP UNSET LOCK(x1)

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x2; !$OMP END DO

REST OF ALGORITHM

!$OMP END PARALLEL

!$OMP END PARALLEL

CALL OMP DESTROY LOCK(x1,x2,x3)

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 12/28

Working Our Way Through the CCD Scheme

Obtain lock before operating on a coordinate direction, release when
finished (order of comput. thread lock exchange important)

COMMUNICATE x1 [A1]

CALL OMP INIT LOCK(x1,x2,x3)

CALL OMP SET NUM THREADS(2)

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(tid,test) SHARED(x1,x2,x3,nth)

tid=OMP GET THREAD NUM()

tid=0 tid=1

CALL OMP SET LOCK(x2)

CALL OMP SET LOCK(x3)

! Spin until the x1 lock is set.

test=.TRUE.

DO WHILE(test)

test=OMP TEST LOCK(x1)

IF (test) CALL OMP UNSET LOCK(x1)

END DO

COMMUNICATE x2 [A2]

CALL OMP UNSET LOCK(x2)

COMMUNICATE x3 [A3]

CALL OMP UNSET LOCK(x3)

CALL OMP SET LOCK(x1)

COMMUNICATE x1 [C1]

CALL OMP UNSET LOCK(x1)

CALL OMP SET LOCK(x2)

COMMUNICATE x2 [C2]

CALL OMP UNSET LOCK(x2)

REST OF ALGORITHM

CALL OMP SET NUM THREADS(nth-1)

!$OMP PARALLEL

!$OMP MASTER

CALL OMP SET LOCK(x1)

! Spin until the x2 lock is set.

! Spin until the x3 lock is set.

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x1; !$OMP END DO

!$OMP MASTER

CALL OMP SET LOCK(x2)

CALL OMP UNSET LOCK(x1)

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO; COMPUTE x2; !$OMP END DO

REST OF ALGORITHM

!$OMP END PARALLEL

!$OMP END PARALLEL

CALL OMP DESTROY LOCK(x1,x2,x3)

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 13/28

Scalability of CCD Scheme on (Cray XE6) Blue Waters

Weak scaling improved from 58% (single-threaded, blocking) to 90%
(dedicated comm. thread) for 81923 production problem on 256K PEs

10−1

100

101

101 102 103 104 105 106

1024 3

2048 3

4096 3

8192 3

16384 3

W
al
lT

im
e
(s
ec
)

Processing Elements
Figure: Timings on BW (Cray XE6) for single-threaded, blocking;

multi-threaded, blocking; single-threaded, overlapped; multi-threaded,
overlapped; one dedicated communication thread per NUMA domain.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 14/28

Examining Details of Explicit Overlap Approach

Look at detailed timeline data of comm. and comput. threads
I Weak-scaling study at target problem density (81923 on 8K nodes)
I Record starting and ending times of each operation with MPI_WTIME()
I Red for x1, blue for x2, green for x3, and (thick) black for spinning on a lock

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10
24

3
81

92
3

P
ro
bl
em

Si
ze

Normalized Run Time

Figure: Thread timeline data. For each problem size, bottom timeline for comm.
thread, and top timeline for comput. thread.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 15/28

A Similar Approach Using Explicit OpenMP Tasks

How else can we express our ideas in the source code?
Package comm. and comput. operations in explicit OpenMP tasks.
Enforce order of operations with DEPEND (fully supported in CCE/8.6).
Two initial threads and nested regions; use MPI_THREAD_SERIALIZED.

!$ CALL OMP_SET_NUM_THREADS (2)
!$OMP PARALLEL
!
! Set number of computational threads for all nested regions.
!$ CALL OMP_SET_NUM_THREADS(nth -1)
!
! Master thread generates all tasks (only one shown below).
!$OMP MASTER
! A communication task for the X1 direction.
!$OMP TASK DEPEND(OUT:SCX1 ,COMM)
CALL MPI_SENDRECV (...)
!$OMP END TASK
!$OMP END MASTER
!$OMP END PARALLEL

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 16/28

Outline

1 Introduction

2 Algorithms for Homogeneous Computing Environments

3 Algorithms for Heterogeneous Computing Environments

4 Conclusions

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 17/28

Acceleration of Production DNS Code

Challenges associated with porting codes to run on GPUs:
Maintain maximum code portability by retaining legacy Fortran code
base. Rely heavily on OpenMP 4.X offloading available through CCE.
I Still requires effort to ensure loops achieve high performance on GPUs.
Severe imbalance between memory available on the host and device.
I On Titan XK7 nodes, 32 GB available on the host, 6 GB on the GPU.

Must minimize data movements between the host and device.

Plans and questions for current acceleration effort:
Overall cost dominated by scalar field computation: accelerate this
portion, leave small velocity computation untouched.
Minimize data movement: put entire scalar computation on the GPU.
Can scalability be improved by overlapping communication and
computation with OpenMP 4.5?

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 18/28

Getting the Process Started

The porting process can be long and complicated, depending on how
well-suited the initial algorithm is for acceleration.

Can the code run on an acceptable number of GPUs efficiently, i.e.,
with good scaling relative to smaller problem sizes and core counts?
Are all kernels in the code accelerated well enough? Are there some
critical kernels which require special treatment?

Some changes to our code/algorithm were inevitable.
Important to manage memory: reduce the number of arrays and
develop “low-storage” algorithms which still offer good performance.
MPI on the host uses derived datatypes with strided accesses: must
pack data to move between host and device into contiguous buffers.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 19/28

A Conflict: Memory Layout vs Computational Performance

Code uses 3D arrays which are all allocated in the same way.
For example: ALLOCATE(df1(nc1,nc2,nc3)).
For most loops, we get great (coalesced) access along the inner index.

A problematic kernel: solving a linear system along the inner index.
DO k=1,nc3; DO j=1,nc2; DO i=2,nc1
df1(i,j,k)=F[df1(i,j,k),df1(i-1,j,k)]
END DO; END DO; END DO

Cannot vectorize i loop, but need memory access along inner index.

Swap memory layout to improve this kernel:
Make j loop the inner index: ALLOCATE(buf(nc2,nc1,nc3))

DO k=1,nc3; DO i=2,nc1; DO j=1,nc2
buf(j,i,k)=F[buf(j,i,k),buf(j,i-1,k)]
END DO; END DO; END DO

Not free: loops elsewhere in code need original memory layout.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 20/28

Improving the Surrounding Loops with Blocking

Need to restrict the changes to memory layout as much as possible
Use a buffer array and block loops surrounding linear system solution
For example, the loop that finalizes the solution to CCD now looks like

!$OMP TARGET TEAMS DISTRIBUTE COLLAPSE (5)
DO k=1,nc3

DO bj=0,xbj_max ,xbj_siz
DO bi=0,xbi_max ,xbi_siz

DO j=1,xbj_siz
DO i=1,xbi_siz

df1(bi+i,bj+j,k)=F[buf(bj+j,bi+i,k) ,...]
END DO

END DO
END DO

END DO
END DO
!$OMP END TARGET TEAMS DISTRIBUTE

Blocking factors tuned to achieve best overall performance.

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 21/28

Performance of Routine Applying CCD in the x1 Direction

Loop-level performance for CPU and GPU execution
Focusing on computations in the x1 direction
GPU performance metrics with nvprof: dram_util., alu_fu_util.
Test problem: 5123 with 2x2x2 process layout and 4 OpenMP threads

Computations with original memory layout
Loop CPU (s) GPU (s) Speedup dram alu
RHS 0.0895 0.0125 7.13 7 9

Lin. Sys. 0.5576 0.2161 2.58 2 1
Final Sol. 0.2354 0.0211 11.2 7 8
Total 0.8824 0.2497 3.53 — —

Computations with swapped memory layout and loop blocking
Loop CPU (s) GPU (s) Speedup dram alu
RHS 0.1265 0.0185 6.84 5 9

Lin. Sys. 0.1407 0.0336 4.19 7 2
Final Sol. 0.1515 0.0153 9.88 8 9
Total 0.4187 0.0674 6.21 — —

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 22/28

Summary of Acceleration of DNS Code Using CCE/8.6

Algorithmic changes to RK4 required to run on Titan
For best performance, do not calc. all derivatives together (memory).

Step Device Operation Summary
1 CPU Receive velocity field and fill ghost layers
2 PCI Transfer u1 velocity to GPU
3 ALL Calculate scalar derivatives in x1; interpolate u1
4 PCI Begin transfer of u3 velocity to GPU
5 GPU Increment RK4 with x1 diffusion and partial advection
6 ALL Calculate advection derivative in x1
7 GPU Increment RK4 with x1 advection term
8 ALL Calculate scalar derivatives in x2 and x3; interpolate u3
9 PCI Begin transfer of u2 velocity to GPU
10 GPU Increment RK4 with x2 and x3 diffusion and x3 advection
11 ALL Begin calculation of x3 advection derivative; interpolate u2
12 GPU Increment RK4 with x2 partial advection
13 ALL Finalize advection derivatives in x2 and x3

14 GPU Perform RK4 sub-stage update

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 23/28

OpenMP 4.5 Usage with CCE/8.6 in DNS Code

Use tasking clauses on TARGET construct to overlap comm./comput.
Ensure correct ordering of kernels with DEPEND and a directionally-
dependent dummy variable, e.g., SYNCX3 for the x3 direction.
Before performing communication in, say, x3, launch all available x2
kernels asynchronously with NOWAIT.

! From previous data movement , make sure data is on host.
!$OMP TARGET DEPEND(IN:SYNCX3)
!$OMP END TARGET
!
! Launch all kernels in the X2 direction (showing just one).
!$OMP TARGET TEAMS DISTRIBUTE DEPEND(INOUT:SYNCX2) NOWAIT
<Computational task on the GPU for the X2 direction >
!$OMP END TARGET TEAMS DISTRIBUTE
!
! Proceed with communication call in the X3 direction.
CALL MPI_ALLTOALL (...)

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 24/28

Performance and Scalability of Accelerated DNS Code

Appx. 5X speedup, with improvement from 75% (non-async.) to 89%
(async. with NOWAIT) weak-scaling for 81923 on 8K nodes.

CPU-only: 15.7 for 5123 and 16.5 for 81923

OpenMP 4.5 GPU: 2.93 for 5123 and 3.30 for 81923

100

101 102 103 104 105 106

512 3

1024 3

2048 3

4096 3

8192 3

W
al
lT

im
e
(s
ec
)

Processing Elements
Figure: GPU code timings for non-async. (+) and async. using NOWAIT (X).

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 25/28

Outline

1 Introduction

2 Algorithms for Homogeneous Computing Environments

3 Algorithms for Heterogeneous Computing Environments

4 Conclusions

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 26/28

OpenMP Wish List and Feedback

OpenMP has been extremely useful to achieve high performance and
good scalability on homogeneous and heterogeneous architectures.

1 We could use non-contiguous movements between host and device:

!$OMP TARGET UPDATE FROM(us(1:2 ,: ,:))

2 More intuitive synchronization constructs for a given “stream”:

!$OMP TASKWAIT DEPEND(SYNC) <-> !$OMP TARGET DEPEND(IN:SYNC)
!$OMP END TARGET

3 We would like to time asynchronous TARGET tasks without using
system software, perhaps with additional OpenMP clauses:

!$OMP TARGET TEAMS DISTRIBUTE DEPEND(OUT:SYNC) NOWAIT &
!$OMP START_TIME(T1) FINISH_TIME(T2)
<Computational kernel >
!$OMP END TARGET TEAMS DISTRIBUTE

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 27/28

Conclusions and Future Work

Using OpenMP in a petascale turbulence code:
On CPUs (BW): dedicated comm. threads improve scalability
On GPUs (Titan): OpenMP 4.5 with CCE/8.6 giving high performance
I Algorithmic changes to reduce memory
I Overlap comm. and comput. with NOWAIT and DEPEND

Future work:
Manuscript being prepared to report algorithms and performance
Acceleration of pseudo-spectral scheme may be of more general interest
Working on port of kernels to prototype architecture for Summit
I Transitioning from Cray’s CCE to IBM’s XLF: performance portability
I Different node architecture: multiple GPUs on each node

Clay, Buaria, Yeung OpenMPCon 2017 September 18, 2017 28/28

	Introduction
	Algorithms for Homogeneous Computing Environments
	Algorithms for Heterogeneous Computing Environments
	Conclusions

