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• Rapidly changing microprocessor design and heterogeneous 
architectures  

• Applications must adapt to exploit parallelism 

• Mini-application -- will serve as a foundation for Exascale-ready 
implementation 

• Co-designing with asynchronous programming models 
(Habanero C++, Kokkos, MAGMA)
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• DMRG++ → Density Matrix Renormalization Group 
 

• DMRG++ algorithm -- deeper understanding of nanoscale material 
properties  
 

• Sparse matrix algebra computational motif  
 

• Actively developed application by Material Applications group @ORNL
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• Profiled on a Bulldozer AMD 
Opteron processor (TITAN) 

• 80% of execution time →  
calculating the Hamiltonian  

• Application runs in phases (graph 
shows 5 phases)  

• Shows significant load imbalance 

• Dynamic Application → problem 
size grows → greater load 
imbalance

PROFILING : Shared Memory (DMRG++)

Standard deviation of all execution times per 
parallel region instance over time. Execution 
uses 8 threads on a single TITAN node  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• Current DMRG++ — limited to 1-Dimensional Problems 

• Scaling up — enables:  

✤ Practical solution for 2-D and 3-D  
problems 

✤ First principle (almost) models  
without approximating  
electron-electron interaction  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• OpenMP 
❖ Nested parallelism  
❖ OpenMP tasks — address load imbalance  

• Exploring asynchronous task based programming models  
❖ New ideas could be candidates for future OpenMP extensions  

 

   Productivity            Performance 

• Compiler optimizations 
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• DMRG++ →  compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

• Programming styles (using OpenMP 4.5 constructs) :  

✤ Nested Parallelism 
✤ Multi-level Tasking 
✤ Multi-level Tasking with Nested Parallelism 
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PSEUDO CODE — (y = H*x) : Sequential
 for ( i in C_Rows )

 for ( j in C_Cols )

 for ( k in C [i][j].list() )



12

PSEUDO CODE — (y = H*x) : Parallel



12

PSEUDO CODE — (y = H*x) : Parallel



13

PROGRAMMING STYLES



13

✤ Nested Parallelism 
 

PROGRAMMING STYLES



13

✤ Nested Parallelism 
 

✤ Multi-Level Tasking 
 

PROGRAMMING STYLES



13

✤ Nested Parallelism 
 

✤ Multi-Level Tasking 
 

✤ Multi-Level Tasking with Nested Parallelism 
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1. Nested Parallelism : Challenges 
• Lack of support for nested work-sharing loops (Spec. Restriction)  

 

• Creating / destroying parallel regions — affects scalability   
 

• Lack of debugging support within work-sharing loops 
✤ omp single / omp master / omp critical  

 

• Thread affinity (using OpenMP Places / proc-bind) — depth 3
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2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

• Lack of support for task-level reductions  
 

• No support for OpenMP constructs within task-loops 
✤ omp single / omp master / omp critical  
 

• Task-elasticity — no support for dynamic resource allocation  
• grain-size — thread to task-mapping 
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3. Tasking with Nested Parallelism: Challenges 
• Creating / destroying parallel regions — affects scalability 

 

• Task-loops — variable are first private and NOT thread private 
✤ reduction becomes complicated

• Task-affinity — within OpenMP nested parallel region 
✤ extensions to tied-tasks  (depth 3) 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• Compilers used: GCC, XLC++, CLANG++  

• Evaluated on Summit-dev (OLCF): 

✦ 2, 10-core IBM Power8 CPUs (8 h/w threads per core) 

✦ 4 NVIDIA Tesla P100 GPUs  

• DGEMM call: IBM ESSL (and ESSL-smp)
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• Each loop is parallelized 
separately 

• Inner loop (jPatch) 
performs vector reduction 

• Parallelizing k-loop  
→ threaded DGEMM (IBM 
ESSL)
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• Nested parallel-for’s  
→ iPatch and jPatch 

• Processor bindings  
✤ Outer: Spread 
✤ Inner: Close 

• Dynamic scheduling 
 

• Significant overhead  
→creating / destroying || regions
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USING OpenMP WITH LIBRARIES
 for ( i in C_Rows )

 for ( j in C_Cols )

 for ( k in C [i][j].list() )

OpenMP Parallel Region

IBM ESSL — SMP (Threaded version)
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OpenMP WITH LIBRARIES: Challenges
• Current thread support:  

✤ OMP_SET_NUM_THREADS <num of threads>  
 

• Lack of support for dynamic thread assignment 

• Interoperability with external libraries: 
✤ Support to extract task-level/thread-level information 
✤ Within nested parallel region — undefined behavior 
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HABANERO  C/C++  LIBRARY (HCLib)
• Developed at Rice University as part of the Habanero Extreme Scale 

Software Research Project  

• HCLib — Task-based parallel programming model  

• HCLib runtime — light-weight, work-stealing & locality-aware  

• HCLib — path to Exascale programming system  
→ intra-node:  resource management & scheduling 
→ inter-node:  integration w/ communication models (MPI, UPC++ or 
OpenSHMEM)

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014 
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• Construct for pre-defined / user-defined reductions 
• Large flexibility for implementations: 

27

✤ Eager reduction policy — portable implementation
Eager: Reduction at put  

ac.put() 

end-finish 

p

ac.put() p
ac.put() pu

Accumulator 

atomic variable 

read-only result field

ac.put() p

ac.put() p
ac.put() pu

Accumulator 

local reduction fields

read-only result field

store 

reduce & store end-finish 

Lazy: Reduction at end-finish 

ac.get() 

ac.get() 

T0 T1 T2 

T0 T1 T2 
Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013



FINISH ACCUMULATORS
• Construct for pre-defined / user-defined reductions 
• Large flexibility for implementations: 

27

✤ Lazy reduction policy — customized for target runtime task scheduler

Eager: Reduction at put  

ac.put() 

end-finish 

p

ac.put() p
ac.put() pu

Accumulator 

atomic variable 

read-only result field

ac.put() p

ac.put() p
ac.put() pu

Accumulator 

local reduction fields

read-only result field

store 

reduce & store end-finish 

Lazy: Reduction at end-finish 

ac.get() 

ac.get() 

T0 T1 T2 

T0 T1 T2 

Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013
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PSEUDO CODE:  HABANERO C++

Parallel Region

User-defined 
Reduction
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Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

✤ Task-affinity: binding tasks to cores (extending tied-tasks)  

✤ Thread persistence in nested parallelism (Depth 3) 

✤ Dynamic OpenMP Places  

✤ Addressing debugging Challenges
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• OpenMP target directives — GPUs on Summit-dev 
 

• OpenMP parallel regions — create abstractions on CPUs 
 

• Co-designing:  

✤ Using Kokkos (Sandia National Lab)    

✤ Using MAGMA — DGEMM batched kernel (Univ. of Tennessee, Knoxville) 

✤ Habanero C/C++ Accumulators (Georgia Tech. / Rice University) 

๏ Original implementation of finish accumulators was done in Habanero-Java
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