
ORNL is managed by UT-Battelle  
for the US Department of Energy

Experiences with using
different OpenMP 4.5
programming styles to
bring DMRG++ to Exascale

OpenMP Con 2017

Arghya Chatterjee (ORNL / Georgia Tech.)  
Oscar Hernandez (ORNL)
Vivek Sarkar (Georgia Tech.) 

Application Support Team
Dr. E. D’Azevedo (CNMS)
Dr. G. Alvarez (CNMS)

 Dr. Wael Elwasif (ORNL)

September 18, 2017

2

INTRODUCTION

• Rapidly changing microprocessor design and heterogeneous
architectures  

2

INTRODUCTION

• Rapidly changing microprocessor design and heterogeneous
architectures  

• Applications must adapt to exploit parallelism 

2

INTRODUCTION

• Rapidly changing microprocessor design and heterogeneous
architectures  

• Applications must adapt to exploit parallelism 

• Mini-application -- will serve as a foundation for Exascale-ready
implementation 

2

INTRODUCTION

• Rapidly changing microprocessor design and heterogeneous
architectures  

• Applications must adapt to exploit parallelism 

• Mini-application -- will serve as a foundation for Exascale-ready
implementation 

• Co-designing with asynchronous programming models
(Habanero C++, Kokkos, MAGMA)

2

INTRODUCTION

OUTLINE

OUTLINE

DMRG++

Target
Application

OUTLINE

DMRG++

Target
Application

MOTIVATION

Physics /
Nano-science

& 
Programming

Models

OUTLINE

DMRG++

Target
Application

MOTIVATION

Physics /
Nano-science

& 
Programming

Models

MINI-
APPLICATION

Design,
Implementation

&
Challenges

encountered

OUTLINE

DMRG++

Target
Application

MOTIVATION

Physics /
Nano-science

& 
Programming

Models

MINI-
APPLICATION

Design,
Implementation

&
Challenges

encountered

STRATEGY

Programming
framework

support

OUTLINE

DMRG++

Target
Application

MOTIVATION

Physics /
Nano-science

& 
Programming

Models

MINI-
APPLICATION

Design,
Implementation

&
Challenges

encountered

STRATEGY

Programming
framework

support

OPEN MP
SUPPORT

Adding new
Constructs /
functionality

4

DMRG ++

• DMRG++ → Density Matrix Renormalization Group 
 

4

DMRG ++

• DMRG++ → Density Matrix Renormalization Group 
 

• DMRG++ algorithm -- deeper understanding of nanoscale material
properties  
 

4

DMRG ++

• DMRG++ → Density Matrix Renormalization Group 
 

• DMRG++ algorithm -- deeper understanding of nanoscale material
properties  
 

• Sparse matrix algebra computational motif  
 

4

DMRG ++

• DMRG++ → Density Matrix Renormalization Group 
 

• DMRG++ algorithm -- deeper understanding of nanoscale material
properties  
 

• Sparse matrix algebra computational motif  
 

• Actively developed application by Material Applications group @ORNL

4

DMRG ++

5

PROFILING : Shared Memory (DMRG++)

5

• Profiled on a Bulldozer AMD
Opteron processor (TITAN) 

• 80% of execution time →
calculating the Hamiltonian  

PROFILING : Shared Memory (DMRG++)

Standard deviation of all execution times per
parallel region instance over time. Execution
uses 8 threads on a single TITAN node  
(8 blue dots per instance).

Index of instances

St
an

da
rd

 D
ev

ia
ti

on
 o

f a
ll

ta
sk

 ti
m

es

5

• Profiled on a Bulldozer AMD
Opteron processor (TITAN) 

• 80% of execution time →
calculating the Hamiltonian  

• Application runs in phases (graph
shows 5 phases)  

PROFILING : Shared Memory (DMRG++)

Standard deviation of all execution times per
parallel region instance over time. Execution
uses 8 threads on a single TITAN node  
(8 blue dots per instance).

Index of instances

St
an

da
rd

 D
ev

ia
ti

on
 o

f a
ll

ta
sk

 ti
m

es

5

• Profiled on a Bulldozer AMD
Opteron processor (TITAN) 

• 80% of execution time →
calculating the Hamiltonian  

• Application runs in phases (graph
shows 5 phases)  

• Shows significant load imbalance 

PROFILING : Shared Memory (DMRG++)

Standard deviation of all execution times per
parallel region instance over time. Execution
uses 8 threads on a single TITAN node  
(8 blue dots per instance).

Index of instances

St
an

da
rd

 D
ev

ia
ti

on
 o

f a
ll

ta
sk

 ti
m

es

5

• Profiled on a Bulldozer AMD
Opteron processor (TITAN) 

• 80% of execution time →
calculating the Hamiltonian  

• Application runs in phases (graph
shows 5 phases)  

• Shows significant load imbalance 

• Dynamic Application → problem
size grows → greater load
imbalance

PROFILING : Shared Memory (DMRG++)

Standard deviation of all execution times per
parallel region instance over time. Execution
uses 8 threads on a single TITAN node  
(8 blue dots per instance).

Index of instances

St
an

da
rd

 D
ev

ia
ti

on
 o

f a
ll

ta
sk

 ti
m

es

6

MOTIVATION — Physics

• Current DMRG++ — limited to 1-Dimensional Problems 

6

MOTIVATION — Physics

• Current DMRG++ — limited to 1-Dimensional Problems 

• Scaling up — enables:  

6

MOTIVATION — Physics

• Current DMRG++ — limited to 1-Dimensional Problems 

• Scaling up — enables:  

✤ Practical solution for 2-D and 3-D  
problems 

6

MOTIVATION — Physics

2-D model

3-D model

• Current DMRG++ — limited to 1-Dimensional Problems 

• Scaling up — enables:  

✤ Practical solution for 2-D and 3-D  
problems 

✤ First principle (almost) models  
without approximating  
electron-electron interaction  

6

MOTIVATION — Physics

2-D model

3-D model

7

MOTIVATION — Programming Models

• OpenMP 
❖ Nested parallelism
❖ OpenMP tasks — address load imbalance

7

MOTIVATION — Programming Models

• OpenMP 
❖ Nested parallelism
❖ OpenMP tasks — address load imbalance

• Exploring asynchronous task based programming models  
❖ New ideas could be candidates for future OpenMP extensions  

 

 Productivity Performance

7

MOTIVATION — Programming Models

• OpenMP 
❖ Nested parallelism
❖ OpenMP tasks — address load imbalance

• Exploring asynchronous task based programming models  
❖ New ideas could be candidates for future OpenMP extensions  

 

 Productivity Performance

• Compiler optimizations

7

MOTIVATION — Programming Models

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

• Programming styles (using OpenMP 4.5 constructs) :  

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

• Programming styles (using OpenMP 4.5 constructs) :  

✤ Nested Parallelism 

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

• Programming styles (using OpenMP 4.5 constructs) :  

✤ Nested Parallelism 
✤ Multi-level Tasking 

8

EXECUTION MODEL

• DMRG++ → compute intensive: calculating the sparse matrix Hamiltonian 

• Two-dimensional dense/sparse matrix multiplication 

• Programming styles (using OpenMP 4.5 constructs) :  

✤ Nested Parallelism 
✤ Multi-level Tasking 
✤ Multi-level Tasking with Nested Parallelism

8

EXECUTION MODEL

9

KRONECKER PRODUCT (y = H*x)

9

KRONECKER PRODUCT (y = H*x)
Hamiltonian Matrix

9

KRONECKER PRODUCT (y = H*x)
Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

9

KRONECKER PRODUCT (y = H*x)
Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

9

KRONECKER PRODUCT (y = H*x)
Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

A[k] B[k]

10

KRONECKER PRODUCT (y = H*x)

10

KRONECKER PRODUCT (y = H*x)

Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

A[k] B[k] A[k] B[k]

A[k] B[k]A[k] B[k]

10

KRONECKER PRODUCT (y = H*x)

Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

A[k] B[k] A[k] B[k]

A[k] B[k]A[k] B[k]

x []

10

KRONECKER PRODUCT (y = H*x)

Hamiltonian Matrix

CIJ [npatches : npatches]

0

0 1

1

A[k] B[k] A[k] B[k]

A[k] B[k]A[k] B[k]

y [] x []

11

PSEUDO CODE — (y = H*x) : Sequential

11

PSEUDO CODE — (y = H*x) : Sequential
 for (i in C_Rows)

 for (j in C_Cols)

 for (k in C [i][j].list())

12

PSEUDO CODE — (y = H*x) : Parallel

12

PSEUDO CODE — (y = H*x) : Parallel

13

PROGRAMMING STYLES

13

✤ Nested Parallelism 
 

PROGRAMMING STYLES

13

✤ Nested Parallelism 
 

✤ Multi-Level Tasking 
 

PROGRAMMING STYLES

13

✤ Nested Parallelism 
 

✤ Multi-Level Tasking 
 

✤ Multi-Level Tasking with Nested Parallelism

PROGRAMMING STYLES

14

1. Nested Parallelism

14

1. Nested Parallelism

14

1. Nested Parallelism

14

1. Nested Parallelism

User-defined 
Reductions

15

1. Nested Parallelism : Challenges

15

1. Nested Parallelism : Challenges
• Lack of support for nested work-sharing loops (Spec. Restriction)  

 

15

1. Nested Parallelism : Challenges
• Lack of support for nested work-sharing loops (Spec. Restriction)  

 

• Creating / destroying parallel regions — affects scalability  
 

15

1. Nested Parallelism : Challenges
• Lack of support for nested work-sharing loops (Spec. Restriction)  

 

• Creating / destroying parallel regions — affects scalability  
 

• Lack of debugging support within work-sharing loops
✤ omp single / omp master / omp critical  

 

15

1. Nested Parallelism : Challenges
• Lack of support for nested work-sharing loops (Spec. Restriction)  

 

• Creating / destroying parallel regions — affects scalability  
 

• Lack of debugging support within work-sharing loops
✤ omp single / omp master / omp critical  

 

• Thread affinity (using OpenMP Places / proc-bind) — depth 3

16

2. Multi-level Tasking : using taskloop

16

2. Multi-level Tasking : using taskloop

16

2. Multi-level Tasking : using taskloop

16

2. Multi-level Tasking : using taskloop

User-defined 
Reductions

17

2. Multi-level Tasking : Challenges

17

2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

17

2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

17

2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

• Lack of support for task-level reductions  
 

17

2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

• Lack of support for task-level reductions  
 

• No support for OpenMP constructs within task-loops
✤ omp single / omp master / omp critical  
 

17

2. Multi-level Tasking : Challenges
• Nested task-loops — behavior is implementation specific  

• Lack of support for task-level reductions  
 

• No support for OpenMP constructs within task-loops
✤ omp single / omp master / omp critical  
 

• Task-elasticity — no support for dynamic resource allocation
• grain-size — thread to task-mapping

18

3. Multi-level Tasking with Nested Parallelism

18

3. Multi-level Tasking with Nested Parallelism

18

3. Multi-level Tasking with Nested Parallelism

User-defined 
Reductions

18

3. Multi-level Tasking with Nested Parallelism

User-defined 
Reductions

18

3. Multi-level Tasking with Nested Parallelism

User-defined 
Reductions

18

3. Multi-level Tasking with Nested Parallelism

User-defined 
Reductions

19

3. Tasking with Nested Parallelism: Challenges

19

3. Tasking with Nested Parallelism: Challenges
• Creating / destroying parallel regions — affects scalability 

 

19

3. Tasking with Nested Parallelism: Challenges
• Creating / destroying parallel regions — affects scalability 

 

• Task-loops — variable are first private and NOT thread private
✤ reduction becomes complicated

19

3. Tasking with Nested Parallelism: Challenges
• Creating / destroying parallel regions — affects scalability 

 

• Task-loops — variable are first private and NOT thread private
✤ reduction becomes complicated

19

3. Tasking with Nested Parallelism: Challenges
• Creating / destroying parallel regions — affects scalability 

 

• Task-loops — variable are first private and NOT thread private
✤ reduction becomes complicated

• Task-affinity — within OpenMP nested parallel region
✤ extensions to tied-tasks (depth 3) 

 

20

EXPERIMENTAL SETUP

• Compilers used: GCC, XLC++, CLANG++  

20

EXPERIMENTAL SETUP

• Compilers used: GCC, XLC++, CLANG++  

• Evaluated on Summit-dev (OLCF):

✦ 2, 10-core IBM Power8 CPUs (8 h/w threads per core)

✦ 4 NVIDIA Tesla P100 GPUs  

20

EXPERIMENTAL SETUP

• Compilers used: GCC, XLC++, CLANG++  

• Evaluated on Summit-dev (OLCF):

✦ 2, 10-core IBM Power8 CPUs (8 h/w threads per core)

✦ 4 NVIDIA Tesla P100 GPUs  

• DGEMM call: IBM ESSL (and ESSL-smp)

20

EXPERIMENTAL SETUP

EXPERIMENTAL DATASET

21

EXPERIMENTAL DATASET

CIJ [npatches : npatches]

0

0 1

1

A[k] B[k] A[k] B[k]

A[k] B[k] A[k] B[k]

Hamiltonian Matrix
21

EXPERIMENTAL DATASET
0 1 2 3 4 5

0

1

2

3

4

5

Sparsity of the Hamiltonian Matrix
21

Sparse 
Matrix

Dense 
Matrix

EXPERIMENTAL DATASET
0 1 2 3 4 5

0

1

2

3

4

5

Sparsity of the Hamiltonian Matrix

• Data (A[k]’s and B[k]’s)  
→ mostly principal diagonal  

21

Sparse 
Matrix

Dense 
Matrix

EXPERIMENTAL DATASET
0 1 2 3 4 5

0

1

2

3

4

5

Sparsity of the Hamiltonian Matrix

• Data (A[k]’s and B[k]’s)  
→ mostly principal diagonal  

• Density increases  
→ towards the center 

21

Sparse 
Matrix

Dense 
Matrix

EXPERIMENTAL DATASET
0 1 2 3 4 5

0

1

2

3

4

5

Sparsity of the Hamiltonian Matrix

• Data (A[k]’s and B[k]’s)  
→ mostly principal diagonal  

• Density increases  
→ towards the center 

• Sparsity increases  
→ away from the principal diagonal

21

Sparse 
Matrix

Dense 
Matrix

EXPERIMENTAL DATASET
0 1 2 3 4 5

0

1

2

3

4

5

Sparsity of the Hamiltonian Matrix

• Data (A[k]’s and B[k]’s)  
→ mostly principal diagonal  

• Density increases  
→ towards the center 

• Sparsity increases  
→ away from the principal diagonal

21

Sparse 
Matrix

Dense 
Matrix

22

EXPERIMENTAL EVALUATION

• Each loop is parallelized
separately 

22

EXPERIMENTAL EVALUATION

• Each loop is parallelized
separately 

• Inner loop (jPatch)
performs vector reduction 

22

EXPERIMENTAL EVALUATION

• Each loop is parallelized
separately 

• Inner loop (jPatch)
performs vector reduction 

• Parallelizing k-loop  
→ threaded DGEMM (IBM
ESSL)

22

EXPERIMENTAL EVALUATION

23

EXPERIMENTAL EVALUATION: Projection

• Nested parallel-for’s  
→ iPatch and jPatch 

• Processor bindings
✤ Outer: Spread
✤ Inner: Close 

23

EXPERIMENTAL EVALUATION: Projection

• Nested parallel-for’s  
→ iPatch and jPatch 

• Processor bindings
✤ Outer: Spread
✤ Inner: Close 

• Dynamic scheduling 

23

EXPERIMENTAL EVALUATION: Projection

• Nested parallel-for’s  
→ iPatch and jPatch 

• Processor bindings
✤ Outer: Spread
✤ Inner: Close 

• Dynamic scheduling 

• Significant overhead  
→creating / destroying || regions

23

EXPERIMENTAL EVALUATION: Projection

24

USING OpenMP WITH LIBRARIES

24

USING OpenMP WITH LIBRARIES
 for (i in C_Rows)

 for (j in C_Cols)

 for (k in C [i][j].list())

24

USING OpenMP WITH LIBRARIES
 for (i in C_Rows)

 for (j in C_Cols)

 for (k in C [i][j].list())

OpenMP Parallel Region

IBM ESSL — SMP (Threaded version)

25

OpenMP WITH LIBRARIES: Challenges

25

OpenMP WITH LIBRARIES: Challenges
• Current thread support:

✤ OMP_SET_NUM_THREADS <num of threads>  
 

25

OpenMP WITH LIBRARIES: Challenges
• Current thread support:

✤ OMP_SET_NUM_THREADS <num of threads>  
 

• Lack of support for dynamic thread assignment

25

OpenMP WITH LIBRARIES: Challenges
• Current thread support:

✤ OMP_SET_NUM_THREADS <num of threads>  
 

• Lack of support for dynamic thread assignment

25

OpenMP WITH LIBRARIES: Challenges
• Current thread support:

✤ OMP_SET_NUM_THREADS <num of threads>  
 

• Lack of support for dynamic thread assignment

• Interoperability with external libraries:
✤ Support to extract task-level/thread-level information
✤ Within nested parallel region — undefined behavior

HABANERO C/C++ LIBRARY (HCLib)

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014

HABANERO C/C++ LIBRARY (HCLib)
• Developed at Rice University as part of the Habanero Extreme Scale

Software Research Project  

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014

HABANERO C/C++ LIBRARY (HCLib)
• Developed at Rice University as part of the Habanero Extreme Scale

Software Research Project  

• HCLib — Task-based parallel programming model  

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014

HABANERO C/C++ LIBRARY (HCLib)
• Developed at Rice University as part of the Habanero Extreme Scale

Software Research Project  

• HCLib — Task-based parallel programming model  

• HCLib runtime — light-weight, work-stealing & locality-aware  

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014

HABANERO C/C++ LIBRARY (HCLib)
• Developed at Rice University as part of the Habanero Extreme Scale

Software Research Project  

• HCLib — Task-based parallel programming model  

• HCLib runtime — light-weight, work-stealing & locality-aware  

• HCLib — path to Exascale programming system  
→ intra-node: resource management & scheduling 
→ inter-node: integration w/ communication models (MPI, UPC++ or
OpenSHMEM)

26
HabaneroUPC++: a Compiler-free PGAS Library. V. Kumar, Y. Zheng, V. Cavé, Z. Budimlic ,́ and V. Sarkar, PGAS 2014

FINISH ACCUMULATORS

27

Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013

FINISH ACCUMULATORS
• Construct for pre-defined / user-defined reductions 

27

Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013

FINISH ACCUMULATORS
• Construct for pre-defined / user-defined reductions 
• Large flexibility for implementations:

27

Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013

FINISH ACCUMULATORS
• Construct for pre-defined / user-defined reductions 
• Large flexibility for implementations:

27

✤ Eager reduction policy — portable implementation
Eager: Reduction at put

ac.put()

end-finish

p

ac.put() p
ac.put() pu

Accumulator

atomic variable

read-only result field

ac.put() p

ac.put() p
ac.put() pu

Accumulator

local reduction fields

read-only result field

store

reduce & store end-finish

Lazy: Reduction at end-finish

ac.get()

ac.get()

T0 T1 T2

T0 T1 T2
Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013

FINISH ACCUMULATORS
• Construct for pre-defined / user-defined reductions 
• Large flexibility for implementations:

27

✤ Lazy reduction policy — customized for target runtime task scheduler

Eager: Reduction at put

ac.put()

end-finish

p

ac.put() p
ac.put() pu

Accumulator

atomic variable

read-only result field

ac.put() p

ac.put() p
ac.put() pu

Accumulator

local reduction fields

read-only result field

store

reduce & store end-finish

Lazy: Reduction at end-finish

ac.get()

ac.get()

T0 T1 T2

T0 T1 T2

Finish Accumulators: a Deterministic Reduction Construct for Dynamic Task Parallelism. J. Shirako, V. Cavé, J. Zhao, & V. Sarkar. WODET 2013

28

PSEUDO CODE: HABANERO C++

28

PSEUDO CODE: HABANERO C++

28

PSEUDO CODE: HABANERO C++

28

PSEUDO CODE: HABANERO C++

Parallel Region

28

PSEUDO CODE: HABANERO C++

Parallel Region

User-defined 
Reduction

29

Candidates for Future OpenMP Support

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

✤ Task-affinity: binding tasks to cores (extending tied-tasks)  

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

✤ Task-affinity: binding tasks to cores (extending tied-tasks)  

✤ Thread persistence in nested parallelism (Depth 3) 

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

✤ Task-affinity: binding tasks to cores (extending tied-tasks)  

✤ Thread persistence in nested parallelism (Depth 3) 

✤ Dynamic OpenMP Places  

29

Candidates for Future OpenMP Support
✤ Support for Task-level reductions  

✤ Task-inflation: dynamic resource allocation to tasks  

✤ Task-affinity: binding tasks to cores (extending tied-tasks)  

✤ Thread persistence in nested parallelism (Depth 3) 

✤ Dynamic OpenMP Places  

✤ Addressing debugging Challenges

30

ONGOING WORK: DMRG++

• OpenMP target directives — GPUs on Summit-dev 

30

ONGOING WORK: DMRG++

• OpenMP target directives — GPUs on Summit-dev 

• OpenMP parallel regions — create abstractions on CPUs 

30

ONGOING WORK: DMRG++

• OpenMP target directives — GPUs on Summit-dev 

• OpenMP parallel regions — create abstractions on CPUs 

• Co-designing:

✤ Using Kokkos (Sandia National Lab)

✤ Using MAGMA — DGEMM batched kernel (Univ. of Tennessee, Knoxville)

✤ Habanero C/C++ Accumulators (Georgia Tech. / Rice University)

๏ Original implementation of finish accumulators was done in Habanero-Java

30

ONGOING WORK: DMRG++

• We would like to thank our collaborators:

– ORNL: Dr. Wael Elwasif (CSMD)  
 Dr. E. D’Azevedo (CNMS) 
 Dr. G. Alvarez (CNMS)

– Rice University : Dr. Jun Shirako  

• This research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

31

ACKNOWLEDGEMENTS

Bringing the DMRG++ Scientific
Application to Exascale

Arghya “Ronnie” Chatterjee
Research Collaborator, CSMD, ORNL

Ph.D. Student, Georgia Tech
arghya@gatech.edu

September 18th, 2017

