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Early 2020s § HPC Systems 

50X Performance § 7X Performance 

§ Exascale Systems 

Past:  

Focus on HPC performance 

Today:  
Focus on Data, Analytics, Cognitive, and HPC 

Heterogeneous compute 

Future: 
Add improved cognitive capabilities,  
Heterogeneous compute and memory 
Integration of new technologies. 

Roadmap to Exascale


Early 2010s 



Architectural complexity impacts many aspects of the  
system software stack and execution environment: 
 
 
 
 
 
 
Architectural complexity impact is expected to increase significantly by 2022 
 
 
 
 
 
 
The programming model is the interface between all that complexity and the 
application developer . . .  

OS and runtime implications 
Control Systems, Resource managers, schedulers 
Tools – performance monitors, visualization 
Debuggers, 
. . .  

The Programming Model Challenge


Heterogeneity in compute and memory 
Memory attributes 
Data management 
Resiliency 
. . .  



Programming Model Constraints


•  	Address	a	broad	range	of	programmer	experEse	
•  Low	level	programming	experEse	–	performance	is	paramount	
•  ApplicaEon	experEse	–	rapid	deployment,	produc,vity	and	portability	are	key	

	
• Provide	high	level	abstracEons	with	‘breakout’	mechanisms	for	criEcal	performance	paths	

•  Provide	a	migraEon	path	for	Legacy	codes	and	cross-plaOorm	performance	portability	

•  	Support	a	range	of	implementaEon	paths	
•  Libraries	
•  Language/compiler	extensions	–	pragmas,	direcEves	
•  New	languages	

• Barriers	to	adopEon	



Highest performance with programmer control 

The Applica:on Programmers Dilemma


Highest productivity with automatic compiler technology  

Sequential languages with explicit threading 

Higher level pragmas and 
directives preserve readability of 
the code to some extent 
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Automatic Optimization 

Automatic techniques for: 
Auto-parallelization 
Locality optimizations 
DMA optimization 
Speculative parallelization 
Helper Threads 
Dynamic techniques 

User code is left unchanged 

Parallel languages, pragmas and 
libraries           

Manual techniques: 
unrolling, reversal etc  
performance at expense of 
readability … 
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Exascale Programming Models: … what we were thinking ~ 2009/10


• For	2015/18	–	new	models	not	feasible	in	the	Emeframe	
•  Abstract	machine	model	is	changing	-	Major	focus	needs	to	be	on	intra-node		

•  HPC	programming	models	have	tended	to	follow	rather	than	lead	in	the	area	of	GPU	technology	
•  Inter-node	–	MPI	is	likely	to	be	good	enough	

•  Unified	models	another	opEon	–	but	need	hardware	support	for	global	address	space	
•  InteracEon	of	programming	model	and	RAS	will	be	very	important	
•  More	focus	on	asynchronous	design		

•  will	enable	applicaEons	to	be	more	resilient,	latency	tolerant	and	more	resistant	to	impact	of	ji[er	in	large	systems	

•  Invest	in	a	range	of	programming	models	
•  Monitor	evolving	models	beyond	exascale	community:	CUDA,	OpenCL,	TBB	…	
•  Evolve	established	hybrid	:	MPI	+	OpenMP,	Pthreads,		
•  Develop	new	hybrid:	MPI	+	PGAS	??	
•  HolisEc	models:	CAF,	UPC,	HPCS,		
•  RevoluEonary	approaches	-	new	languages	not	a	good	idea	-	unlikely	that	revoluEon	will	happen	…	

• Consensus	to	pursue	three	technologies:	
•  Well	defined	abstract	machine	model	and	open	runEme	layer	
•  MulEple	diverse	node	level	models	with	MPI	internode	
•  Tools	

	



 


Early 2020s § HPC Systems 

50X Performance § 7X Performance 

§ Exascale Systems 

Past:  

Focus on HPC performance 

Today:  
Focus on Data, Analytics, Cognitive, and HPC 

Heterogeneous compute 

Future: 
Add improved cognitive capabilities,  
Heterogeneous compute and memory 
Integration of new technologies. 

Roadmap to Exascale: co-design through collabora:ons


Early 2010s 

§ World’s First Fully Data Centric Systems 

§ Sierra (LLNL), Summit (ORNL) 

IBM,	Mellanox,	and	
NVIDIA	awarded	$325M	

U.S.	Department	of	
Energy’s	CORAL	
Supercomputers	



§ 9/25/17	 § 8	

Summit and Sierra: The first pre-exascale systems . . . 


§ https://www.top500.org/news/ornl-begins-construction-of-
summit-supercomputer/ 



   


	

	

	

High	Level	Programming	for	OpenPOWER	and	CORAL:	A	case	study	
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Compiler View of OpenPower Architecture 
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Fat cores 

SMT 8 (8 threads/core) 

160 threads/processor 

Complex branch prediction 

Out-of-order pipeline 

Highly parallel “thin” cores 

2048 threads/SMX 

O(105) threads/device 

Thread divergence is 
serialized 

Limited synchronization 
(within CUDA block only) 



Compiler View of OpenPower Architecture 
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Pascal 

“Fat” cores 

SMT 8 (8 threads/core) 

160 threads/processor 

Complex branch prediction 

Out-of-order pipeline 

Large caches 

Low memory latency 

Optimize for cache locality 

Highly parallel “thin” cores 

2048 threads/SMX 

O(105) threads/device 

Thread divergence is 
serialized 

Limited synchronization 
(within CUDA block only) 

Small on-chip caches 
compared to #threads 

L2 is off-chip, equivalent to 
L4 in P8+ 

Optimize for memory 
latency hiding using lots of 
in-flight threads 



OpenPower: Flexible Acceleration 
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Pascal 

The OpenPower Architecture delivers best performance and flexible acceleration 
beyond HPC field 
• Balanced combination of Power processors and NVIDIA GPU accelerators 

§ High memory bandwidth, low memory latency 
§ High memory bandwidth, large number of FMA units 

How to effectively and efficiently program OpenPower becomes critical 



PROGRAMMING OPTIONS FOR 
CORAL/OPENPOWER 
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Programming Options 
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OpenMP OpenACC CUDA 
Language or 

Pragmas Pragmas Pragmas Based on C/C++ 
or Fortran 

High-Level 
Constructs 

Parallel, loop-like, 
simd, tasking, etc. 

Parallel, loop-like, 
simd None 

Companies/
Organizations 

Actively Involved 

IBM, AMD, Intel, 
Cray, Pathscale, 

Texas 
Instruments, etc. 

Cray, PGI, gcc NVIDIA, PGI, IBM 

Features 

Architecture-
independent 

Flexible 
Parallelism 

Targeted for GPU-like 
accelerators 

Only available on 
GPUs 



Programming Strategy for OpenPower 
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Programming Model Wish List 

High Level Parallel Abstractions 
•  Architecture/accelerator independent 
•  High application pattern coverage (dense, sparse, graphs) 

Performance Portability 
•  Single version of kernels runs on Power and GPU 
•  With the best performance possible 

Easy incremental development 
•  No need to rewrite entire application in new language 
•  Interoperability with assembly kernels and libraries (CUDA, CUDNN) 
•  Early Availability 

Continuity 
•  Industry standard 
•  Supported everywhere 
•  Survives project/architecture/fashion/etc. 

OpenPower 
•  Ideal combination of Power “fat” cores, and NVIDIA ”thin” GPU cores 
•  Different components of HPC workloads can be executed optimally 
•  Power cores low memory latency, GPU high memory bandwidth 



Programming Strategy for OpenPower 
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OpenMP 

Performance 
Portability Continuity 

High-Level 
Abstractions 

Programming Model Wish List 

High Level Parallel Abstractions 
•  Architecture/accelerator independent 
•  High application pattern coverage (dense, sparse, graphs) 

Parallel loops, 
simd, tasks, 
tasks+loops,  

etc. 

Performance Portability 
•  Single version of kernels runs on Power and GPU 
•  With the best performance possible 

Early porting 
shows 

performance 
potential 

Easy incremental development 
•  No need to rewrite entire application in new language 
•  Interoperability with assembly kernels and libraries (CUDA, CUDNN) 
•  Early Availability 

Code 
Annotations 
(#parallel) 

Continuity 
•  Industry standard 
•  Supported everywhere 
•  Survives project/architecture/fashion/etc. 

Supported by: 
IBM, AMD, Intel, 

Cray, PGI, 
Pathscale, etc. 

OpenPower 
•  Ideal combination of Power “fat” cores, and NVIDIA ”thin” GPU cores 
•  Different components of HPC workloads can be executed optimally 
•  Power cores low memory latency, GPU high memory bandwidth 

Easy 
Porting 



OpenMP 4.5 Design Goals 

Write Once, Run Everywhere with Best Performance 
 
How to program a GPU: CUDA, OpenCL, OpenGL, DirectX, Intrinsics, C++AMP, 
OpenACC, etc. 
 
How to program a CPU SIMD unit: intrinsics, OpenCL, or auto-vectorization (possibly 
aided by compiler hints), etc. 
 
How to program CPU threads: C/C++11, OpenMP, TBB, Cilk, MS Async/then continuation, 
Apple GCD, Google executors, etc. 
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OpenMP 4.5 Design Goals 

Write Once, Run Everywhere with Best Performance 
 
How to program a GPU: CUDA, OpenCL, OpenGL, DirectX, Intrinsics, C++AMP, 
OpenACC, etc. 
 
How to program a CPU SIMD unit: intrinsics, OpenCL, or auto-vectorization (possibly 
aided by compiler hints), etc. 
 
How to program CPU threads: C/C++11, OpenMP, TBB, Cilk, MS Async/then continuation, 
Apple GCD, Google executors, etc. 
 
With OpenMP 4.5 and up: 

• Same standard to program GPUs, SIMD units, and CPU threads 
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OpenPower/CORAL Programming Models Roadmap 

Code migration and new code development is a key focus 
•  Near  term: OpenMP4.5, OpenACC, 

•  Compiler support will be available for both 
•  Interoperability with CUDA important 

•  Longer term: OpenMP5 and beyond targeted to be the dominant approach   
•  Driving towards convergence of both directives standards 
•  Evolving unified standards to address portability first and ultimately performance portability 
•  Ultimately prefer a directives optional threading model that can support execution across a 

range of homogeneous and heterogeneous core types (CPU/GPU …) 
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Key Features: 

•  Gives direct access to the 
GPU instruction set 

•  Supports C, C++ and Fortran 

•  Generally achieves best 
leverage of GPUs for best 
application performance 

•  Compilers: nvcc, pgi CUDA 
fortran 

•  Host compilers: gcc, XL 

CUDA 

Key Features: 

•  Designed to simplify 
Programming of 
heterogeneous CPU/GPU 
systems 

•  Directive based parallelization 
for accelerator device 

•  Compilers: PGI, Cray, gcc 

Key Features: 

•  OpenMP 4.5 offloading and 
support for heterogeneous 
CPU/GPU 

•  Leverage existing OpenMP 
high level directives support 

•  Compilers: Open Source LLVM 
OpenMP Compiler, IBM XL 

OpenPower - Programming Languages and Compilers 



OPENMP 
PROGRAMMING MODEL 
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OpenMP Execution Model for Parallel Regions 

Fork and join model 
master thread 

parallel 
region 

worker 
threads 

synchronization barrier 

parallel 
region 

worker 
threads 

synchronization barrier 

§  sequential code executed by the master 
thread 

§  parallel code executed by the master and 
workers 

§  parallel region terminated by a 
synchronization barrier 

§  memory touched in parallel region is 
“released/flushed” at barrier 



Flexible Parallelism 

Parallel Loops 
 
#pragma omp parallel for 
 

for (i = 0; i < M; i++) 
  for (j = 0; j < N; j++) 
     A[i][j] += u1[i] * v1[j] + u2[i] * v2[j]; 

Parallel Loops with SIMD 
 
#pragma omp parallel for 
 

for (i = 0; i < M; i++) 
  #pragma omp simd 
  for (j = 0; j < N; j++) 
     A[i][j] += u1[i] * v1[j] + u2[i] * v2[j]; 
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vector unit 

u1 u2 u3 u4 

v1 v2 v3 v4 
* 

#parallel 

barrier 

#parallel for 
• #parallel recruits threads 
• #for schedules M iterations to parallel 

threads 
• At the end of #parallel there is a barrier 
• Significant performance optimizations for 

successive small parallel loops 

#parallel 

barrier 



Thread Affinity 

#pragma omp parallel for proc_bind(spread) 
 

for (i = 0; i < M; i++) 
  for (j = 0; j < N; j++) 
     A[i][j] += u1[i] * v1[j] + u2[i] * v2[j]; 
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Why use OpenMP 4 ?  

The ultimate goal for developers using OpenMP4.0 and beyond is to achieve: 

a)  portability 
  

b)  performance portability 

while using the same source code and  compiling it on different platforms. 
 
OpenMP4.5 allows incremental transition of applications: 
  non-threaded  codes can be first parallelized using  
  OpenMP directives (if algorithm allows parallelization)  
  tested on the host (CPU) and then  
  offloaded to the device (GPU) 

for (i=0; i<N;i++) 
   y[i] = a*x[i]+y[i] 

#pragma omp parallel for 
for (i=0; i<N;i++) 
   y[i] = a*x[i]+y[i] 

#pragma omp target teams distribute parallel for if(0) 
for (i=0; i<N;i++) 
   y[i] = a*x[i]+y[i] 

#pragma omp target teams distribute parallel for map(to:x[0:N]) map(tofrom:y[0:N]) if(1) 
for (i=0; i<N;i++) 
   y[i] = a*x[i]+y[i] 



OpenMP Accelerator Overview 

•  target transfers control of execution to a SINGLE device thread 
•   map clause is used to fine tune copying of data; default is “map(tofrom:)” 

integer(4) :: n = 64 
real(8), dimension(n,n) :: A, B, C 
!$omp target  
    map(to: A, B) map(from: C) 
 

 !$omp parallel do 
 do i = 0, n, 1 
   do j = 0, n, 1 

          do k = 0, n, 1 
            C(i, j) = A(i, k) * B(k, j) 
          end do 
        end do 
       end do 
 
$!omp end target 

§ * at most one copy of each data structure exists on a device; outermost target map copies data to/from device, copies optional with unified memory 

host thread 

device 
parallel 
region 

device master thread 

device 
worker 
threads 

copy* A, B 

copy* C 

device 
sync 
barrier 



Flexible Parallelism on Devices 
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Parallel Loops on GPU 
 
!$omp target teams distribute parallel for 
do j = 0, M, 1 
  do i = 0, N, 1 
     A(i,j) = A(i,j) + u1(i) * v1(j) + u2(i) * v2(j) 

P8+ 

#target teams 

On the GPU 

§ Target offloads region to GPU 

§ Each team corresponds to a CUDA block 

§ OpenMP threads are CUDA threads 

§ distribute schedules blocks of iterations 
to teams CUDA block: 1 per team 

CUDA grid 

CUDA thread: 1 per OpenMP 
thread 

GPU 



Flexible Parallelism on Devices 

Parallel Loops with SIMD on GPU 
 
#pragma omp target teams distribute parallel for 
 

for (i = 0; i < M; i++) 
  #pragma omp simd 
  for (j = 0; j < N; j++) 
     A[i][j] += u1[i*M+j] * v1[j] + u2[i*M+j] * v2[j]; 

§ simd inside parallel is widely used on host 

§ Leverage vector units per thread 

§ The GPU has no vector units 

§ Map simd lanes into CUDA threads 

 

#target teams 

CUDA grid 

CUDA thread: 1 per OpenMP thread & 
simd lane 

GPU 

CUDA block: 1 per team 



CPU & GPU Parallelism using Tasks 

Target constructs are implicit tasks 

A host thread may initiate several target tasks asynchronously 

Target tasks may have dependencies 

Dependencies between target tasks 
are resolved completely on the GPU 
without host intervention 

Host task 

Target task 

CPU & GPU Parallelism using Tasks 



CPU & GPU Parallelism using Tasks 
Concurrency in a node 

Host threads and device threads 

Multiple GPUs in a node 

Overlap device computation 
and communication 

Concurrent target tasks on 
a GPU with task dependencies 



Target Data 

Data scope and data movement 
• Minimize transfers by design 

Data types that can be mapped 
• Scalars, static and dynamic arrays, structured data types (struct, class, type) 

Memory Model 
• Distributed memory in the current implementation 



Overcoming Data Movement  
Scope of data is important 

double A[n,n], B[n,n], C[n,n]; 
 
#pragma omp target \ 
    map(to: A, B) map(from: C) 
{  
  // define C in terms of A, B 
} 
 
#pragma omp target \ 
    map(to: C) map(from: D) 
{ 
  // define D in terms of C 
} 

host thread 

device 
threads 

copy A,B 

copy C 

copy C 

copy D 

§  Data scope is limited by the target constructs 

§  No data scope for variable C between the two constructs on the device 

§  Results in needless copies of C 



Overcoming Data Movement (cont.)  
Scope of data is important 

real(8) :: A(n,n), B(n,n), C(n,n); 
 
$!omp target data map(alloc: C) 
 
  !$omp target map(to: A, B) 
    // define C in terms of A, B 
  !$omp end target 
 
  !$omp target map(from: D) 
    // define D in terms of C 
  !$omp end target 
 
$!omp end target data 
 

host thread 

copy A, B 

device threads 

copy D 

C 

A,B 

D 

-   C is now a temporary variable that remains on the device 

-   C is not initialized on the device (alloc) 



Forcing Data Movement 
Device has at most a single copy of each mapped variable 

• map clauses are ignored when data is already in device scope 

double A[n,n], B[n,n], C[n,n]; 
#pragma omp target data map(alloc: C) 
{ 
  #pragma omp target map(to: A, B) map(from: C) 
  { 
    // define C in terms of A, B 
   } 
 
  #pragma omp target map(from: D) map(to: C) 
  { 
    // define D in terms of C 
  } 
} 
 

thus inner map 
clauses of c are 
ignored 

c is already in 
device scope 

-  Add “#pragma omp target update from(C)” force a copy back to the host 

-   Or use “always” qualifier in the map clause, e.g. “map(always from: C)” 



Unstructured Data Movement 
Target enter/exit data do not have a lexical scope 
Scope of duration of device data dictated by runtime 

|  35 

real(8), dimension(:), allocatable :: A, B, C 
allocate(A(N), B(N), C(N)) 
call init (A, B, C) 
 
$!omp target enter data map (alloc: C) 
$!omp target enter data map (to: A, B) 
 
call foo (A, B, C) 
 
$!omp target exit data map (delete: C, B) 
$!omp target exit data map (from: A) 

subroutine foo (A, B, C) 
  real(8), dimension(:) :: A, B, C 
 
 !$omp target teams distribute parallel for 
  do i = 1, N, 1 
    C(i) = i 
  end do 
 
  !$omp target teams distribute parallel for 
  do i = 1, N, 1 
    A(i) = A(i) + B(i) + C(i) 
  end do 
end subroutine 



Some Data Always Resides on Accelerator 
Static data   

• Use “target declare” to create a resident copy 
•  If need to move back and forth, can use “target update” 

#pragma omp declare target 
double A[100]; 
int *p; 
#pragma omp end declare target 
 
#pragma omp target 
{ 

 A[20] = 100; 
 p = malloc(10*sizeof(int)); 

} 
#pragma omp target update from(A) 

  

•  Dynamic data 

-  Use “target declare” for pointer to data structure 

-  Use malloc within target regions to populate the 
pointer 

-  Cannot bring pack the dynamic data (not mapped) 



Summary of Data Scope 
Scope linked with device execution: target 

•  #pragma omp target map(x) {…} 
•  defines a data scope for the duration of execution on device 

Pure Scope, without associated device execution: target data 
•  #pragma omp target data map(x) {…} 
•  only defines a data scope, without launching execution on device 

User can also declare data on the device 
•  #pragma omp declare target to(x) 
•  #pragma omp declare target … #pragma omp end declare target 
•  user is responsible to move data back and forth (except for static initialization) 

Unstructured pure scopes: target entry/exit  
•  pragma omp target enter/exit data map(x) 
•  unstructured scope, can be inserted anywhere while executing on the host 



Accelerator Memory Model 
Programmers may not assume which model is used 
 
 
 
 
 
 
 
 

• so the values of c may (unified) or may not (distributed) change during target execution 
• user should not assume one or the other in a valid OpenMP program 

§ #pragma omp target 

§     map(from: a,b)  

§     map(to: c) 

§ { 
§   // define c in  

§   // terms of a, b 
} 
 

§    

§ unified 

c 

§ distributed 

c 

c 

§ Host mem & thread 

§ device 
threads 

c 

c 

c 

§ Host mem & thread 

§ Device threads & mem 

§ copy 

§ copy 



Accelerator Memory Model: Valid Program 

Different results depending on memory model: not a valid program 
 
How to write a legal OpenMP program: 

• must schedule a ‘target update’ or ’target map(always: )’ 
§ each time that a value def/used on one device  
§ and then def/used on another device  

•  [use/use pattern is fine without intervening target update/map always] 



Accelerators with Unified Memory: implementation perspective 

Map clause does not need to copy data to device private memory 
• since it can access shared memory 
• user must still have them… 

But we (compiler) may decide to selectively copy data 
• e.g. read only data accessed by both host and accelerators 

§ without copy: may generate misses if not cacheable in both 
§ with explicit copy: no misses 

• e.g. dense arrays may be copied over  
§ single DMA moves all of the data 

• e.g. data structures with pointers may not be copied over 
§ to “deep copy” (feature not avail as of now) a linked list, one needs to DMA each element of the list to 

the device, update all of the pointers, … and they may not be used anyway 



Architecture-based Flexible Parallelism 
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Graph-like workload 
•  Highly irregular 
•  e.g. particle simulation 
•  Benefits from large 

caches 
•  Master thread creates 

several tasks 
§  Dynamically scheduled 

to free worker threads 
by runtime 

Data Parallel workload 
•  Relatively Regular 
•  e.g. dense linear algebra 
•  Benefits from large numbers of 

FMA units 

Real-world scientific applications feature multi-physics, 
often executed in parallel 



Difference with Typical GPU Programming Models 

Traditional models: “Execute this one, exclusively-parallel loop” 
• such as found in CUDA, OpenCL,… 
•  transfer control to a single “parallel loop”  
• no sequential code (e.g. to initialize data serially on GPU) 

OpenMP model: “Just another normal OpenMP program, on device” 
•  leverages every+ OpenMP construct 
•  includes parallel regions, parallel loops, tasks, … 
•  includes fine grain and coarse grain synchronizations 

§ e.g. locks, critical regions, barriers… 
• can have sequential and parallel code 

OpenMP supports traditional model too: 
•  it is a “target teams distribute parallel for simd” combined construct 

+	excepEon:	target	constructs	cannot	be	nested	



OpenMP 4+ Features 
Directives 

•  parallel regions 
§ thread affinity 

• worksharing  
§  loop, sections,… 
§ ordered(do across) 

• SIMD 
•  tasking 

§  loops, groups, dep, prio 
•  accelerator (target) 

§ unstructured, nowait 
•  synchronization 
•  cancellation 
•  data attributes 

§ shared, private [first/last] 
§ [user] reductions 
§ target: map data to/from 
§ target: [first] private, subset 

§ Environment Vars 
– number of threads 
– scheduling type 
– dynamic thread adjustment 
– nested parallelism 
– thread limit 
– description of hardware thread 

affinity 
– thread affinity policy 
– default accelerator devices 

§ Runtime Variables 
– number of threads 
– thread id 
– dynamic thread 

adjustment 
– nested parallelism 
– schedule 
– active levels 
– thread limit 
– nesting level 
– team size 
– locks [hint] 
– mapping API 

§ [italic means in progress] 



APPLICATIONS & 
PERFORMANCE 
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KRIPKE – Optimal Performance on CPU and GPU 

// Loop over the hyperplanes (slices). 
for (int slice = …) { 
  #pragma omp target teams distribute parallel for collapse(3) 
  for (int element = …) { 
    for (int directions = …) { 
      for (int group = …) { 
        // calculate data depending on d and new zonal flux 
        // Apply diamond-difference relationships 
      }  
    } 
  } //end element (distribute) 
} //end of "for (slice" 
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#pragma omp parallel { 
  // Loop over the hyperplanes (slices) 
  for (int slice = …) { 
    #pragma omp for 
    for (int element = …) { 
      for (int directions = …) { 
        // calculate data depending on d 
        for (int group = …) { 
          // calculate new zonal flux 
          // apply diamond-difference relationships 
        } 
      } 
  } 
} 

Original CPU version Basic performance portable version 
• No loop-interchange necessary 
• Multiple GPU with multiple host threads on 
different slices 



Performance example: Kripke Runtimes OpenMP vs CUDA 
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Introduction GPU Performance CPU Portability Conclusions

CUDA AND OPENMP 4 KERNEL COMPARISON

D. Appelhans OpenMP 4 Portability Experience 6 / 21

Porting to OpenMP and CUDA 
started at the same time 
• OpenMP version with collapse 

§ Complex code synthesis 
§ Hard to reproduce in CUDA 

• CUDA version uses multiple block 
dimensions 

• Eventually CUDA catches up, after 
some debugging 

OpenPower P8 and 
K40m NVIDIA GPU 



Performance example: LULESH*  

Kernel OpenMP 
(us) 

CUDA 
(us) 

Speedup 
(x) 

.*CalcTimeConstraints.* 24 42 1.75 

.*CalcMonotonicQRegionForElem.* 90 115 1.28 

.*CalcLagrange.* 28 30 1.07 

.*CalcPositionAndVelocityForNodes.* 67 62 0.93 

.*CalcAccelerationForNodes.* 34 31 0.91 

.*CalcKinematicsForElems.* 190 130 0.68 

.*ApplyAccelerationBoundaryConditions.* 4.6 2.4 0.52 

.*CalcMonotonicQGradient.* 197 100 0.51 

Better or comparable 
performance 

Worse performance 

*Courtesy of IBM/Research and XL compiler teams 



Performance on the GPU 

§ Speedup of our compiler over our prior release and GCC (OpenMP & OpenACC) when exploiting (a) only outer loop and (b) outer and inner loop  

Parallelism. 

More details at:“Efficient Fork-Join on GPUs through Warp Specialization”, Jacob et al, To be published at the IEEE International Conference on High Performance 
Computing, Data,and Analytics (HiPC 2017) 

 

Performance Example: Some kernels from SpecACCEL, Rodinia and others 



Summary thoughts 
§  OpenMP4.5 is a relatively new standard and evolving to OpenMP5.0 

•  Implementation of OpenMP4.5 and optimization are on-going efforts: firming the standard, developing 
compilers, and porting applications are happening concurrently 

•  Lessons learned so far  from porting complex codes, and specifically from managing multiple memories and 
data, may lead to new features in the standard and also in its implementation. 

•  The IBM LLVM implementation is fully 4.5 compliant (also includes some prototyping of new standard 
features) 

•  Experience so far, porting applications with OpenMP 4.5 is positive. Often, code portability to various 
processors is achieved with relatively low efforts. Most performance issues are well understood.  

•  Device specific programming models (like CUDA) focus on achieving high performance on specific devices, 
while compilers implementing OpenMP4.5 should support a variety of processors 

•  Large number of kernels written in CUDA and OpenMP4.5 have almost 1:1 mapping and do deliver 
comparable performance 

•  Some kernels rely on intrinsic functions  and those may not have the same performance 

•  Some kernels coded with OpenMP4.5  use omp collapse(n) clause and may perform better than 
corresponding CUDA kernels where collapsing loops  is not available with compiler directives. 



 


Early 2020s § HPC Systems 

50X Performance § 7X Performance 

§ Exascale Systems 

Past:  

Focus on HPC performance 

Today:  
Focus on Data, Analytics, Cognitive, and HPC 

Heterogeneous compute 

Future: 
Add improved cognitive capabilities,  
Heterogeneous compute and memory 
Integration of new technologies. 

Roadmap to Exascale: co-design through collabora:ons


Early 2010s 

§ World’s First Fully Data Centric Systems 

§ Sierra (LLNL), Summit (ORNL) 

IBM,	Mellanox,	and	
NVIDIA	awarded	$325M	

U.S.	Department	of	
Energy’s	CORAL	
Supercomputers	

§ Centers of Excellence 

§ Frequent interactions:  

§ Apps teams 

§ HW/arch 

§ Compiler developers 

§ Early compiler availability 

§ Hackathons 

§ Standards influence 

§ Implementation feedback 

§ CoEPPs – sharing experiences 



   


	

	

	

OpenMP	looking	forward	to	Exascale	

§ 9/25/17	 § 51	
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6 Exascale Computing Project, www.exascaleproject.org

Transition to higher trajectory with advanced architecture

Time

Computing 
Capability

2017 2021 2022 2023 2024 2025 2026 2027

10X

5X

First exascale
advanced architecture
system

Capable exascale
systems

§ https://exascaleproject.org/wp-content/uploads/2017/04/Messina-ECP-
Presentation-HPC-User-Forum-2017-04-18.pdf 



Reaching the elevated Trajectory …
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7 Exascale Computing Project, www.exascaleproject.org

Reaching the Elevated Trajectory will require 
Advanced and Innovative Architectures

In order to reach the elevated trajectory, advanced architectures must 
be developed that make a big leap in:

– Parallelism
– Memory and Storage
– Reliability
– Energy Consumption

In addition, the exascale advanced architecture will need to solve 
emerging data science and machine learning problems in addition to 
the traditional modeling and simulations applications. 

The exascale advanced architecture 
developments benefit all future U.S. 

systems on the higher trajectory 



Some Applica:ons Risks and Challenges
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Some Applications Risks and Challenges
• Exploiting on-node memory and compute hierarchies

• Programming models: what to use where and how (e.g., task-based RTS)

• Integrating S/W components that use disparate approaches (e.g., on-node parallelism)

• Developing and integrating co-designed motif-based community components

• Achieving portable performance (without “if-def’ing” 2 different code bases)

• Multi-physics coupling: both algorithms and software

• Integrating sensitivity analysis, data assimilation, and uncertainty quantification technologies

• Understanding requirements of Data Analytic Computing methods and applications 

– Critical infrastructure, superfacility, supply chain, image/signal processing, in situ analytics

– Machine/statistical learning, classification, streaming/graph analytics, discrete event, combinatorial optimization



	
•  The	next	layer	in	the	soeware	stack	consists	of	programming	models	and	runEmes.	

•  In	the	context	of	exascale	systems,	the	programming	model	primarily	provides	a	way	for	the	applicaEons	to	express	how	they	intend	to	
run	in	parallel.	Such	capability	is	important	because	the	languages	that	are	commonly	used	in	HPC	applicaEons—primarily	C++	and	
Fortran—don’t	have	built-in	language	features	to	efficiently	convey	the	abundance	of	parallelism	that	must	be	exploited.	

•  The	most	common	programming	model	in	use	today	generally	is	referred	to	as	MPI+X.	MPI	is	the	Message	Passing	Interface	used	for	
internode	distributed	memory	communicaEon,	and	“X”	refers	to	a	number	of	shared-memory	threading	models	such	as	OpenMP,	
OpenACC,	OpenCL,	and	CUDA	for	using	on-node	parallelism	and	heterogeneous	compuEng	devices	such	as	graphics	processing	units	and	
fine-grained	shared-memory	threading.	

• OpenMP	represents	a	community	standard	with	the	ulEmate	objecEve	of	working	effecEvely	
across	the	wide	variety	of	nodes.	Other	ECP	efforts	provide	language-based	libraries	that	allow	
the	applicaEon	to	select	from	a	pale[e	of	programming	models	most	suitable	for	a	parEcular	
plaOorm.	Both	approaches	focus	on	achieving	performance-portability,	or	the	ability	for	an	
applicaEon	to	run	effecEvely	on	mulEple	exascale	plaOorms	without	the	need	to	maintain	
mulEple	versions	of	the	source	code.	

•  In	addiEon	to	building	on	MPI+X,	the	ECP	is	exploring	newer	programming	models	primarily	embodied	in	the	concept	of	asynchronous	
many-task	(AMT)	models.	

•  AMT	programming	models	show	early	potenEal	in	addressing	some	of	the	bo[lenecks	of	tradiEonal	MPI+X	programs	such	as	
programmer	producEvity	and	are	included	in	the	ECP	soeware	stack	for	ambiEous	applicaEon	efforts	looking	to	exploit	the	potenEal	of	
this	new	programming	model	approach.	 § |
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Exascale Programming Models: statements from ECP in 2016




OpenMP in the Exascale Era: Strengths and Challenges  


Advances	in	OpenMP		in	last	3	years	have	posiEoned	it	well	for	a	dominant	role	at	Exascale	
	
•  Evolving	the	standard	to	address	increasing	architectural	complexity	is	being	successfully	
demonstrated	

•  Affinity	
•  Offload	
•  MulE-level	Memory	
	

•  Reference	implementaEons	and	research	prototyping	of	proposed	features	

•  ECP	SOLLVE	project	(SOLLVE:	Scaling	OpenMP	with	LLVM	for	Exascale	performance	and	portability,	
Barbara	Chapman,	Brookhaven	NaEonal	Laboratory	(BNL)	with	ANL,	LLNL,	ORNL,	Rice	Univ.,	UIUC)	
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OpenMP in the Exascale Era: Strengths and Challenges  


Significant		challenges	will	need	to	be	confronted	going	forward:	
	

•  ConEnued	support	for	a	broad	range	of	heterogeneity(in	progress)	

•  Performance	Portability	(In	progress)	

•  Increased	Complexity	(needs	to	be	contained)	

•  Backward	compaEbility	–	gerng	things	right	first	Eme	

•  Broaden	adopEon	beyond	current	user	community:	more	users	–	more	feedback	

•  Expand	into	addiEonal	applicaEon	domains:	Machine	Learning,	AI	…	
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Performance Portability: what might help  


• Centers	of	Excellence	–	working	well	
• COEPP	workshops	
• Hackathons	

•  InteroperaEon	with	DSLs,	e.g.	RAJA	

	
•  Increasing	consideraEon	of	including	a	‘descripEve’	capability	

• Support	for	architectural	features	such	as	Unified	Memory	

§ 9/25/17	 § 58	



Performance Study of OpenMP+RAJA 

•  Lulesh	2.0	on	OpenPower	S822LC	“Minsky”	–	Power	8	and	Pascal	GPU	
•  Comparison	of	loop	execuEon	Emes	when	using	vanilla	OpenMP	vs	RAJA+OpenMP	

§ |
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Power 8 Tests 
• No impact in memory bandwidth-bound loops 
• Missing vectorization limits compute-bound loops 
• How to fix: change RAJA std::iteration space  use to plain old 

loop / improve LLVM vectorizer 

Pascal GPU Tests 
• No performance impact of using lambda in most cases 

§ Register allocation figures almost identical 
• One loop shows bad performance 

§ Only difference with vanilla OpenMP is loading of captured 
arguments in loop body 

§ Can be fixed in compiler 
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Concluding Thoughts


• The	Programming	Model	Landscape	is	huge	
• Vendor	driven:	Exploit	proprietary	HW	features;	Can	create	‘lock-in’	
• Standards	Driven:	Create	a	unified	approach	that	benefits	end	users	
• Research	oriented:	Govt	funded;	University	driven	

•  Plethora	of	high	level	abstracEons	and	home	grown	DSLs	

• Few	new	models	have	captured	the	field	in	the	last	10	years	
• Many	have	fallen	by	the	wayside	
• Established	hybrid	models	conEnue	to	have	the	most	tracEon(MPI	+	X)	

OpenMP	has	made	significant	progress	in	last	20	years	
• Need	to	seize	the	moment,	gain	increased	adopEon,	and	capture	the	broader	
applicaEon	spaces	at	Exascale	and	beyond!	

	



Thank you! 

IBM Systems 

ibm.com/systems/hpc 
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