

	

	

	

OpenMP	in	the	Exascale	Era	

Kathryn	O’Brien	IBM	Research	

	

§ 9/25/17	 § 1	

Early 2020s § HPC Systems

50X Performance § 7X Performance

§ Exascale Systems

Past:

Focus on HPC performance

Today:
Focus on Data, Analytics, Cognitive, and HPC

Heterogeneous compute

Future:
Add improved cognitive capabilities,
Heterogeneous compute and memory
Integration of new technologies.

Roadmap to Exascale

Early 2010s

Architectural complexity impacts many aspects of the
system software stack and execution environment:

Architectural complexity impact is expected to increase significantly by 2022

The programming model is the interface between all that complexity and the
application developer . . .

OS and runtime implications
Control Systems, Resource managers, schedulers
Tools – performance monitors, visualization
Debuggers,
. . .

The Programming Model Challenge

Heterogeneity in compute and memory
Memory attributes
Data management
Resiliency
. . .

Programming Model Constraints

•  	Address	a	broad	range	of	programmer	experEse	
•  Low	level	programming	experEse	–	performance	is	paramount	
•  ApplicaEon	experEse	–	rapid	deployment,	produc,vity	and	portability	are	key	

	
• Provide	high	level	abstracEons	with	‘breakout’	mechanisms	for	criEcal	performance	paths	

•  Provide	a	migraEon	path	for	Legacy	codes	and	cross-plaOorm	performance	portability	

•  	Support	a	range	of	implementaEon	paths	
•  Libraries	
•  Language/compiler	extensions	–	pragmas,	direcEves	
•  New	languages	

• Barriers	to	adopEon	

Highest performance with programmer control

The Applica:on Programmers Dilemma

Highest productivity with automatic compiler technology

Sequential languages with explicit threading

Higher level pragmas and
directives preserve readability of
the code to some extent

C
om

pi
le

r s
up

pl
ie

d

Automatic Optimization

Automatic techniques for:
Auto-parallelization
Locality optimizations
DMA optimization
Speculative parallelization
Helper Threads
Dynamic techniques

User code is left unchanged

Parallel languages, pragmas and
libraries

Manual techniques:
unrolling, reversal etc
performance at expense of
readability …

M
an

ua
l

In
te

rv
en

tio
n

Se
m

i-a
ut

om
at

ic

Exascale Programming Models: … what we were thinking ~ 2009/10

• For	2015/18	–	new	models	not	feasible	in	the	Emeframe	
•  Abstract	machine	model	is	changing	-	Major	focus	needs	to	be	on	intra-node		

•  HPC	programming	models	have	tended	to	follow	rather	than	lead	in	the	area	of	GPU	technology	
•  Inter-node	–	MPI	is	likely	to	be	good	enough	

•  Unified	models	another	opEon	–	but	need	hardware	support	for	global	address	space	
•  InteracEon	of	programming	model	and	RAS	will	be	very	important	
•  More	focus	on	asynchronous	design		

•  will	enable	applicaEons	to	be	more	resilient,	latency	tolerant	and	more	resistant	to	impact	of	ji[er	in	large	systems	

•  Invest	in	a	range	of	programming	models	
•  Monitor	evolving	models	beyond	exascale	community:	CUDA,	OpenCL,	TBB	…	
•  Evolve	established	hybrid	:	MPI	+	OpenMP,	Pthreads,		
•  Develop	new	hybrid:	MPI	+	PGAS	??	
•  HolisEc	models:	CAF,	UPC,	HPCS,		
•  RevoluEonary	approaches	-	new	languages	not	a	good	idea	-	unlikely	that	revoluEon	will	happen	…	

• Consensus	to	pursue	three	technologies:	
•  Well	defined	abstract	machine	model	and	open	runEme	layer	
•  MulEple	diverse	node	level	models	with	MPI	internode	
•  Tools	

	

Early 2020s § HPC Systems

50X Performance § 7X Performance

§ Exascale Systems

Past:

Focus on HPC performance

Today:
Focus on Data, Analytics, Cognitive, and HPC

Heterogeneous compute

Future:
Add improved cognitive capabilities,
Heterogeneous compute and memory
Integration of new technologies.

Roadmap to Exascale: co-design through collabora:ons

Early 2010s

§ World’s First Fully Data Centric Systems

§ Sierra (LLNL), Summit (ORNL)

IBM,	Mellanox,	and	
NVIDIA	awarded	$325M	

U.S.	Department	of	
Energy’s	CORAL	
Supercomputers	

§ 9/25/17	 § 8	

Summit and Sierra: The first pre-exascale systems . . .

§ https://www.top500.org/news/ornl-begins-construction-of-
summit-supercomputer/

	

	

	

High	Level	Programming	for	OpenPOWER	and	CORAL:	A	case	study	

§ 9/25/17	 § 9	

Compiler View of OpenPower Architecture

10

T T T T
T T T T

C C C C
C C C C
C C C C

SM
Ts

C

O
R

ES
 SMX SMX SMX

SMX SMX SMX SMX SMX SMX SMX

SMX SMX SMX

off chip

L1
L2

L3
L4

L3 DRAM

off chip

Constant
Read-Only

L1+SMEM

L2
DRAM

64 KB/core
512 KB/core

8 MB/core 96 MB

128 MB/proc. chip

2 TB

10 KB

48 KB
64 KB

1.5 MB
12 GB

Processing

Pascal

Pascal
Pascal

P8+

P8+
N

VL
IN

K
/P

C
I-E

Pascal

Fat cores

SMT 8 (8 threads/core)

160 threads/processor

Complex branch prediction

Out-of-order pipeline

Highly parallel “thin” cores

2048 threads/SMX

O(105) threads/device

Thread divergence is
serialized

Limited synchronization
(within CUDA block only)

Compiler View of OpenPower Architecture

11

T T T T
T T T T

C C C C
C C C C
C C C C

SM
Ts

C

O
R

ES
 SMX SMX SMX

SMX SMX SMX SMX SMX SMX SMX

SMX SMX SMX

off chip

L1
L2

L3
L4

L3 DRAM

off chip

Constant
Read-Only

L1+SMEM

L2
DRAM

64 KB/core
512 KB/core

8 MB/core 96 MB

128 MB/proc. chip

2 TB

10 KB

48 KB
64 KB

1.5 MB
12 GB

Processing

Pascal

Pascal
Pascal

P8+

P8+
N

VL
IN

K
/P

C
I-E

Pascal

“Fat” cores

SMT 8 (8 threads/core)

160 threads/processor

Complex branch prediction

Out-of-order pipeline

Large caches

Low memory latency

Optimize for cache locality

Highly parallel “thin” cores

2048 threads/SMX

O(105) threads/device

Thread divergence is
serialized

Limited synchronization
(within CUDA block only)

Small on-chip caches
compared to #threads

L2 is off-chip, equivalent to
L4 in P8+

Optimize for memory
latency hiding using lots of
in-flight threads

OpenPower: Flexible Acceleration

| 12

Pascal

Pascal

P8+

P8+ N
VL

IN
K

/P
C

I-E

Pascal

Pascal

The OpenPower Architecture delivers best performance and flexible acceleration
beyond HPC field
• Balanced combination of Power processors and NVIDIA GPU accelerators

§ High memory bandwidth, low memory latency
§ High memory bandwidth, large number of FMA units

How to effectively and efficiently program OpenPower becomes critical

PROGRAMMING OPTIONS FOR
CORAL/OPENPOWER

| 13

Pascal

Pascal

P8+

P8+ N
VL

IN
K

/P
C

I-E

Pascal

Pascal

§ 9/25/17

Programming Options

14

OpenMP OpenACC CUDA
Language or

Pragmas Pragmas Pragmas Based on C/C++
or Fortran

High-Level
Constructs

Parallel, loop-like,
simd, tasking, etc.

Parallel, loop-like,
simd None

Companies/
Organizations

Actively Involved

IBM, AMD, Intel,
Cray, Pathscale,

Texas
Instruments, etc.

Cray, PGI, gcc NVIDIA, PGI, IBM

Features

Architecture-
independent

Flexible
Parallelism

Targeted for GPU-like
accelerators

Only available on
GPUs

Programming Strategy for OpenPower

| 15

Programming Model Wish List

High Level Parallel Abstractions
•  Architecture/accelerator independent
•  High application pattern coverage (dense, sparse, graphs)

Performance Portability
•  Single version of kernels runs on Power and GPU
•  With the best performance possible

Easy incremental development
•  No need to rewrite entire application in new language
•  Interoperability with assembly kernels and libraries (CUDA, CUDNN)
•  Early Availability

Continuity
•  Industry standard
•  Supported everywhere
•  Survives project/architecture/fashion/etc.

OpenPower
•  Ideal combination of Power “fat” cores, and NVIDIA ”thin” GPU cores
•  Different components of HPC workloads can be executed optimally
•  Power cores low memory latency, GPU high memory bandwidth

Programming Strategy for OpenPower

| 16

OpenMP

Performance
Portability Continuity

High-Level
Abstractions

Programming Model Wish List

High Level Parallel Abstractions
•  Architecture/accelerator independent
•  High application pattern coverage (dense, sparse, graphs)

Parallel loops,
simd, tasks,
tasks+loops,

etc.

Performance Portability
•  Single version of kernels runs on Power and GPU
•  With the best performance possible

Early porting
shows

performance
potential

Easy incremental development
•  No need to rewrite entire application in new language
•  Interoperability with assembly kernels and libraries (CUDA, CUDNN)
•  Early Availability

Code
Annotations
(#parallel)

Continuity
•  Industry standard
•  Supported everywhere
•  Survives project/architecture/fashion/etc.

Supported by:
IBM, AMD, Intel,

Cray, PGI,
Pathscale, etc.

OpenPower
•  Ideal combination of Power “fat” cores, and NVIDIA ”thin” GPU cores
•  Different components of HPC workloads can be executed optimally
•  Power cores low memory latency, GPU high memory bandwidth

Easy
Porting

OpenMP 4.5 Design Goals

Write Once, Run Everywhere with Best Performance

How to program a GPU: CUDA, OpenCL, OpenGL, DirectX, Intrinsics, C++AMP,
OpenACC, etc.

How to program a CPU SIMD unit: intrinsics, OpenCL, or auto-vectorization (possibly
aided by compiler hints), etc.

How to program CPU threads: C/C++11, OpenMP, TBB, Cilk, MS Async/then continuation,
Apple GCD, Google executors, etc.

| 17

OpenMP 4.5 Design Goals

Write Once, Run Everywhere with Best Performance

How to program a GPU: CUDA, OpenCL, OpenGL, DirectX, Intrinsics, C++AMP,
OpenACC, etc.

How to program a CPU SIMD unit: intrinsics, OpenCL, or auto-vectorization (possibly
aided by compiler hints), etc.

How to program CPU threads: C/C++11, OpenMP, TBB, Cilk, MS Async/then continuation,
Apple GCD, Google executors, etc.

With OpenMP 4.5 and up:

• Same standard to program GPUs, SIMD units, and CPU threads

| 18

OpenPower/CORAL Programming Models Roadmap

Code migration and new code development is a key focus
•  Near term: OpenMP4.5, OpenACC,

•  Compiler support will be available for both
•  Interoperability with CUDA important

•  Longer term: OpenMP5 and beyond targeted to be the dominant approach
•  Driving towards convergence of both directives standards
•  Evolving unified standards to address portability first and ultimately performance portability
•  Ultimately prefer a directives optional threading model that can support execution across a

range of homogeneous and heterogeneous core types (CPU/GPU …)

| 19

Key Features:

•  Gives direct access to the
GPU instruction set

•  Supports C, C++ and Fortran

•  Generally achieves best
leverage of GPUs for best
application performance

•  Compilers: nvcc, pgi CUDA
fortran

•  Host compilers: gcc, XL

CUDA

Key Features:

•  Designed to simplify
Programming of
heterogeneous CPU/GPU
systems

•  Directive based parallelization
for accelerator device

•  Compilers: PGI, Cray, gcc

Key Features:

•  OpenMP 4.5 offloading and
support for heterogeneous
CPU/GPU

•  Leverage existing OpenMP
high level directives support

•  Compilers: Open Source LLVM
OpenMP Compiler, IBM XL

OpenPower - Programming Languages and Compilers

OPENMP
PROGRAMMING MODEL

| 21

OpenMP Execution Model for Parallel Regions

Fork and join model
master thread

parallel
region

worker
threads

synchronization barrier

parallel
region

worker
threads

synchronization barrier

§  sequential code executed by the master
thread

§  parallel code executed by the master and
workers

§  parallel region terminated by a
synchronization barrier

§  memory touched in parallel region is
“released/flushed” at barrier

Flexible Parallelism

Parallel Loops

#pragma omp parallel for

for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

Parallel Loops with SIMD

#pragma omp parallel for

for (i = 0; i < M; i++)
 #pragma omp simd
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

| 23

vector unit

u1 u2 u3 u4

v1 v2 v3 v4
*

#parallel

barrier

#parallel for
• #parallel recruits threads
• #for schedules M iterations to parallel

threads
• At the end of #parallel there is a barrier
• Significant performance optimizations for

successive small parallel loops

#parallel

barrier

Thread Affinity

#pragma omp parallel for proc_bind(spread)

for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

| 24

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core 7

socket 0 socket 1
Close affinity: pack threads for cache locality

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core 7

socket 0 socket 1

Spread affinity: spread threads to maximize
bandwidth

#parallel

barrier

Why use OpenMP 4 ?

The ultimate goal for developers using OpenMP4.0 and beyond is to achieve:

a)  portability

b)  performance portability

while using the same source code and compiling it on different platforms.

OpenMP4.5 allows incremental transition of applications:
 non-threaded codes can be first parallelized using
 OpenMP directives (if algorithm allows parallelization)
 tested on the host (CPU) and then
 offloaded to the device (GPU)

for (i=0; i<N;i++)
 y[i] = a*x[i]+y[i]

#pragma omp parallel for
for (i=0; i<N;i++)
 y[i] = a*x[i]+y[i]

#pragma omp target teams distribute parallel for if(0)
for (i=0; i<N;i++)
 y[i] = a*x[i]+y[i]

#pragma omp target teams distribute parallel for map(to:x[0:N]) map(tofrom:y[0:N]) if(1)
for (i=0; i<N;i++)
 y[i] = a*x[i]+y[i]

OpenMP Accelerator Overview

•  target transfers control of execution to a SINGLE device thread
•  map clause is used to fine tune copying of data; default is “map(tofrom:)”

integer(4) :: n = 64
real(8), dimension(n,n) :: A, B, C
!$omp target
 map(to: A, B) map(from: C)

 !$omp parallel do
 do i = 0, n, 1
 do j = 0, n, 1

 do k = 0, n, 1
 C(i, j) = A(i, k) * B(k, j)
 end do
 end do
 end do

$!omp end target

§ * at most one copy of each data structure exists on a device; outermost target map copies data to/from device, copies optional with unified memory

host thread

device
parallel
region

device master thread

device
worker
threads

copy* A, B

copy* C

device
sync
barrier

Flexible Parallelism on Devices

| 27

Parallel Loops on GPU

!$omp target teams distribute parallel for
do j = 0, M, 1
 do i = 0, N, 1
 A(i,j) = A(i,j) + u1(i) * v1(j) + u2(i) * v2(j)

P8+

#target teams

On the GPU

§ Target offloads region to GPU

§ Each team corresponds to a CUDA block

§ OpenMP threads are CUDA threads

§ distribute schedules blocks of iterations
to teams CUDA block: 1 per team

CUDA grid

CUDA thread: 1 per OpenMP
thread

GPU

Flexible Parallelism on Devices

Parallel Loops with SIMD on GPU

#pragma omp target teams distribute parallel for

for (i = 0; i < M; i++)
 #pragma omp simd
 for (j = 0; j < N; j++)
 A[i][j] += u1[i*M+j] * v1[j] + u2[i*M+j] * v2[j];

§ simd inside parallel is widely used on host

§ Leverage vector units per thread

§ The GPU has no vector units

§ Map simd lanes into CUDA threads

#target teams

CUDA grid

CUDA thread: 1 per OpenMP thread &
simd lane

GPU

CUDA block: 1 per team

CPU & GPU Parallelism using Tasks

Target constructs are implicit tasks

A host thread may initiate several target tasks asynchronously

Target tasks may have dependencies

Dependencies between target tasks
are resolved completely on the GPU
without host intervention

Host task

Target task

CPU & GPU Parallelism using Tasks

CPU & GPU Parallelism using Tasks
Concurrency in a node

Host threads and device threads

Multiple GPUs in a node

Overlap device computation
and communication

Concurrent target tasks on
a GPU with task dependencies

Target Data

Data scope and data movement
• Minimize transfers by design

Data types that can be mapped
• Scalars, static and dynamic arrays, structured data types (struct, class, type)

Memory Model
• Distributed memory in the current implementation

Overcoming Data Movement
Scope of data is important

double A[n,n], B[n,n], C[n,n];

#pragma omp target \
 map(to: A, B) map(from: C)
{
 // define C in terms of A, B
}

#pragma omp target \
 map(to: C) map(from: D)
{
 // define D in terms of C
}

host thread

device
threads

copy A,B

copy C

copy C

copy D

§  Data scope is limited by the target constructs

§  No data scope for variable C between the two constructs on the device

§  Results in needless copies of C

Overcoming Data Movement (cont.)
Scope of data is important

real(8) :: A(n,n), B(n,n), C(n,n);

$!omp target data map(alloc: C)

 !$omp target map(to: A, B)
 // define C in terms of A, B
 !$omp end target

 !$omp target map(from: D)
 // define D in terms of C
 !$omp end target

$!omp end target data

host thread

copy A, B

device threads

copy D

C

A,B

D

-  C is now a temporary variable that remains on the device

-  C is not initialized on the device (alloc)

Forcing Data Movement
Device has at most a single copy of each mapped variable

• map clauses are ignored when data is already in device scope

double A[n,n], B[n,n], C[n,n];
#pragma omp target data map(alloc: C)
{
 #pragma omp target map(to: A, B) map(from: C)
 {
 // define C in terms of A, B
 }

 #pragma omp target map(from: D) map(to: C)
 {
 // define D in terms of C
 }
}

thus inner map
clauses of c are
ignored

c is already in
device scope

-  Add “#pragma omp target update from(C)” force a copy back to the host

-  Or use “always” qualifier in the map clause, e.g. “map(always from: C)”

Unstructured Data Movement
Target enter/exit data do not have a lexical scope
Scope of duration of device data dictated by runtime

| 35

real(8), dimension(:), allocatable :: A, B, C
allocate(A(N), B(N), C(N))
call init (A, B, C)

$!omp target enter data map (alloc: C)
$!omp target enter data map (to: A, B)

call foo (A, B, C)

$!omp target exit data map (delete: C, B)
$!omp target exit data map (from: A)

subroutine foo (A, B, C)
 real(8), dimension(:) :: A, B, C

 !$omp target teams distribute parallel for
 do i = 1, N, 1
 C(i) = i
 end do

 !$omp target teams distribute parallel for
 do i = 1, N, 1
 A(i) = A(i) + B(i) + C(i)
 end do
end subroutine

Some Data Always Resides on Accelerator
Static data

• Use “target declare” to create a resident copy
•  If need to move back and forth, can use “target update”

#pragma omp declare target
double A[100];
int *p;
#pragma omp end declare target

#pragma omp target
{

 A[20] = 100;
 p = malloc(10*sizeof(int));

}
#pragma omp target update from(A)

•  Dynamic data

-  Use “target declare” for pointer to data structure

-  Use malloc within target regions to populate the
pointer

-  Cannot bring pack the dynamic data (not mapped)

Summary of Data Scope
Scope linked with device execution: target

•  #pragma omp target map(x) {…}
•  defines a data scope for the duration of execution on device

Pure Scope, without associated device execution: target data
•  #pragma omp target data map(x) {…}
•  only defines a data scope, without launching execution on device

User can also declare data on the device
•  #pragma omp declare target to(x)
•  #pragma omp declare target … #pragma omp end declare target
•  user is responsible to move data back and forth (except for static initialization)

Unstructured pure scopes: target entry/exit
•  pragma omp target enter/exit data map(x)
•  unstructured scope, can be inserted anywhere while executing on the host

Accelerator Memory Model
Programmers may not assume which model is used

• so the values of c may (unified) or may not (distributed) change during target execution
• user should not assume one or the other in a valid OpenMP program

§ #pragma omp target

§  map(from: a,b)

§  map(to: c)

§ {
§  // define c in

§  // terms of a, b
}

§ 

§ unified

c

§ distributed

c

c

§ Host mem & thread

§ device
threads

c

c

c

§ Host mem & thread

§ Device threads & mem

§ copy

§ copy

Accelerator Memory Model: Valid Program

Different results depending on memory model: not a valid program

How to write a legal OpenMP program:

• must schedule a ‘target update’ or ’target map(always:)’
§ each time that a value def/used on one device
§ and then def/used on another device

•  [use/use pattern is fine without intervening target update/map always]

Accelerators with Unified Memory: implementation perspective

Map clause does not need to copy data to device private memory
• since it can access shared memory
• user must still have them…

But we (compiler) may decide to selectively copy data
• e.g. read only data accessed by both host and accelerators

§ without copy: may generate misses if not cacheable in both
§ with explicit copy: no misses

• e.g. dense arrays may be copied over
§ single DMA moves all of the data

• e.g. data structures with pointers may not be copied over
§ to “deep copy” (feature not avail as of now) a linked list, one needs to DMA each element of the list to

the device, update all of the pointers, … and they may not be used anyway

Architecture-based Flexible Parallelism

| 41

Pascal
Pascal

P8+

P8+ N
VL

IN
K

/P
C

I-E

Pascal

Pascal

. . .

Graph-like workload
•  Highly irregular
•  e.g. particle simulation
•  Benefits from large

caches
•  Master thread creates

several tasks
§  Dynamically scheduled

to free worker threads
by runtime

Data Parallel workload
•  Relatively Regular
•  e.g. dense linear algebra
•  Benefits from large numbers of

FMA units

Real-world scientific applications feature multi-physics,
often executed in parallel

Difference with Typical GPU Programming Models

Traditional models: “Execute this one, exclusively-parallel loop”
• such as found in CUDA, OpenCL,…
•  transfer control to a single “parallel loop”
• no sequential code (e.g. to initialize data serially on GPU)

OpenMP model: “Just another normal OpenMP program, on device”
•  leverages every+ OpenMP construct
•  includes parallel regions, parallel loops, tasks, …
•  includes fine grain and coarse grain synchronizations

§ e.g. locks, critical regions, barriers…
• can have sequential and parallel code

OpenMP supports traditional model too:
•  it is a “target teams distribute parallel for simd” combined construct

+	excepEon:	target	constructs	cannot	be	nested	

OpenMP 4+ Features
Directives

•  parallel regions
§ thread affinity

• worksharing
§  loop, sections,…
§ ordered(do across)

• SIMD
•  tasking

§  loops, groups, dep, prio
•  accelerator (target)

§ unstructured, nowait
•  synchronization
•  cancellation
•  data attributes

§ shared, private [first/last]
§ [user] reductions
§ target: map data to/from
§ target: [first] private, subset

§ Environment Vars
– number of threads
– scheduling type
– dynamic thread adjustment
– nested parallelism
– thread limit
– description of hardware thread

affinity
– thread affinity policy
– default accelerator devices

§ Runtime Variables
– number of threads
– thread id
– dynamic thread

adjustment
– nested parallelism
– schedule
– active levels
– thread limit
– nesting level
– team size
– locks [hint]
– mapping API

§ [italic means in progress]

APPLICATIONS &
PERFORMANCE

| 44

KRIPKE – Optimal Performance on CPU and GPU

// Loop over the hyperplanes (slices).
for (int slice = …) {
 #pragma omp target teams distribute parallel for collapse(3)
 for (int element = …) {
 for (int directions = …) {
 for (int group = …) {
 // calculate data depending on d and new zonal flux
 // Apply diamond-difference relationships
 }
 }
 } //end element (distribute)
} //end of "for (slice"

| 45

#pragma omp parallel {
 // Loop over the hyperplanes (slices)
 for (int slice = …) {
 #pragma omp for
 for (int element = …) {
 for (int directions = …) {
 // calculate data depending on d
 for (int group = …) {
 // calculate new zonal flux
 // apply diamond-difference relationships
 }
 }
 }
}

Original CPU version Basic performance portable version
• No loop-interchange necessary
• Multiple GPU with multiple host threads on
different slices

Performance example: Kripke Runtimes OpenMP vs CUDA

| 46

Introduction GPU Performance CPU Portability Conclusions

CUDA AND OPENMP 4 KERNEL COMPARISON

D. Appelhans OpenMP 4 Portability Experience 6 / 21

Porting to OpenMP and CUDA
started at the same time
• OpenMP version with collapse

§ Complex code synthesis
§ Hard to reproduce in CUDA

• CUDA version uses multiple block
dimensions

• Eventually CUDA catches up, after
some debugging

OpenPower P8 and
K40m NVIDIA GPU

Performance example: LULESH*

Kernel OpenMP
(us)

CUDA
(us)

Speedup
(x)

.*CalcTimeConstraints.* 24 42 1.75

.*CalcMonotonicQRegionForElem.* 90 115 1.28

.*CalcLagrange.* 28 30 1.07

.*CalcPositionAndVelocityForNodes.* 67 62 0.93

.*CalcAccelerationForNodes.* 34 31 0.91

.*CalcKinematicsForElems.* 190 130 0.68

.*ApplyAccelerationBoundaryConditions.* 4.6 2.4 0.52

.*CalcMonotonicQGradient.* 197 100 0.51

Better or comparable
performance

Worse performance

*Courtesy of IBM/Research and XL compiler teams

Performance on the GPU

§ Speedup of our compiler over our prior release and GCC (OpenMP & OpenACC) when exploiting (a) only outer loop and (b) outer and inner loop

Parallelism.

More details at:“Efficient Fork-Join on GPUs through Warp Specialization”, Jacob et al, To be published at the IEEE International Conference on High Performance
Computing, Data,and Analytics (HiPC 2017)

Performance Example: Some kernels from SpecACCEL, Rodinia and others

Summary thoughts
§  OpenMP4.5 is a relatively new standard and evolving to OpenMP5.0

•  Implementation of OpenMP4.5 and optimization are on-going efforts: firming the standard, developing
compilers, and porting applications are happening concurrently

•  Lessons learned so far from porting complex codes, and specifically from managing multiple memories and
data, may lead to new features in the standard and also in its implementation.

•  The IBM LLVM implementation is fully 4.5 compliant (also includes some prototyping of new standard
features)

•  Experience so far, porting applications with OpenMP 4.5 is positive. Often, code portability to various
processors is achieved with relatively low efforts. Most performance issues are well understood.

•  Device specific programming models (like CUDA) focus on achieving high performance on specific devices,
while compilers implementing OpenMP4.5 should support a variety of processors

•  Large number of kernels written in CUDA and OpenMP4.5 have almost 1:1 mapping and do deliver
comparable performance

•  Some kernels rely on intrinsic functions and those may not have the same performance

•  Some kernels coded with OpenMP4.5 use omp collapse(n) clause and may perform better than
corresponding CUDA kernels where collapsing loops is not available with compiler directives.

Early 2020s § HPC Systems

50X Performance § 7X Performance

§ Exascale Systems

Past:

Focus on HPC performance

Today:
Focus on Data, Analytics, Cognitive, and HPC

Heterogeneous compute

Future:
Add improved cognitive capabilities,
Heterogeneous compute and memory
Integration of new technologies.

Roadmap to Exascale: co-design through collabora:ons

Early 2010s

§ World’s First Fully Data Centric Systems

§ Sierra (LLNL), Summit (ORNL)

IBM,	Mellanox,	and	
NVIDIA	awarded	$325M	

U.S.	Department	of	
Energy’s	CORAL	
Supercomputers	

§ Centers of Excellence

§ Frequent interactions:

§ Apps teams

§ HW/arch

§ Compiler developers

§ Early compiler availability

§ Hackathons

§ Standards influence

§ Implementation feedback

§ CoEPPs – sharing experiences

	

	

	

OpenMP	looking	forward	to	Exascale	

§ 9/25/17	 § 51	

§ 9/25/17	 § 52	

6 Exascale Computing Project, www.exascaleproject.org

Transition to higher trajectory with advanced architecture

Time

Computing
Capability

2017 2021 2022 2023 2024 2025 2026 2027

10X

5X

First exascale
advanced architecture
system

Capable exascale
systems

§ https://exascaleproject.org/wp-content/uploads/2017/04/Messina-ECP-
Presentation-HPC-User-Forum-2017-04-18.pdf

Reaching the elevated Trajectory …

§ 9/25/17	 § 53	

7 Exascale Computing Project, www.exascaleproject.org

Reaching the Elevated Trajectory will require
Advanced and Innovative Architectures

In order to reach the elevated trajectory, advanced architectures must
be developed that make a big leap in:

– Parallelism
– Memory and Storage
– Reliability
– Energy Consumption

In addition, the exascale advanced architecture will need to solve
emerging data science and machine learning problems in addition to
the traditional modeling and simulations applications.

The exascale advanced architecture
developments benefit all future U.S.

systems on the higher trajectory

Some Applica:ons Risks and Challenges

§ 9/25/17	 § 54	
19 Exascale Computing Project, www.exascaleproject.org

Some Applications Risks and Challenges
• Exploiting on-node memory and compute hierarchies

• Programming models: what to use where and how (e.g., task-based RTS)

• Integrating S/W components that use disparate approaches (e.g., on-node parallelism)

• Developing and integrating co-designed motif-based community components

• Achieving portable performance (without “if-def’ing” 2 different code bases)

• Multi-physics coupling: both algorithms and software

• Integrating sensitivity analysis, data assimilation, and uncertainty quantification technologies

• Understanding requirements of Data Analytic Computing methods and applications

– Critical infrastructure, superfacility, supply chain, image/signal processing, in situ analytics

– Machine/statistical learning, classification, streaming/graph analytics, discrete event, combinatorial optimization

	
•  The	next	layer	in	the	soeware	stack	consists	of	programming	models	and	runEmes.	

•  In	the	context	of	exascale	systems,	the	programming	model	primarily	provides	a	way	for	the	applicaEons	to	express	how	they	intend	to	
run	in	parallel.	Such	capability	is	important	because	the	languages	that	are	commonly	used	in	HPC	applicaEons—primarily	C++	and	
Fortran—don’t	have	built-in	language	features	to	efficiently	convey	the	abundance	of	parallelism	that	must	be	exploited.	

•  The	most	common	programming	model	in	use	today	generally	is	referred	to	as	MPI+X.	MPI	is	the	Message	Passing	Interface	used	for	
internode	distributed	memory	communicaEon,	and	“X”	refers	to	a	number	of	shared-memory	threading	models	such	as	OpenMP,	
OpenACC,	OpenCL,	and	CUDA	for	using	on-node	parallelism	and	heterogeneous	compuEng	devices	such	as	graphics	processing	units	and	
fine-grained	shared-memory	threading.	

• OpenMP	represents	a	community	standard	with	the	ulEmate	objecEve	of	working	effecEvely	
across	the	wide	variety	of	nodes.	Other	ECP	efforts	provide	language-based	libraries	that	allow	
the	applicaEon	to	select	from	a	pale[e	of	programming	models	most	suitable	for	a	parEcular	
plaOorm.	Both	approaches	focus	on	achieving	performance-portability,	or	the	ability	for	an	
applicaEon	to	run	effecEvely	on	mulEple	exascale	plaOorms	without	the	need	to	maintain	
mulEple	versions	of	the	source	code.	

•  In	addiEon	to	building	on	MPI+X,	the	ECP	is	exploring	newer	programming	models	primarily	embodied	in	the	concept	of	asynchronous	
many-task	(AMT)	models.	

•  AMT	programming	models	show	early	potenEal	in	addressing	some	of	the	bo[lenecks	of	tradiEonal	MPI+X	programs	such	as	
programmer	producEvity	and	are	included	in	the	ECP	soeware	stack	for	ambiEous	applicaEon	efforts	looking	to	exploit	the	potenEal	of	
this	new	programming	model	approach.	 § |

5
5

Exascale Programming Models: statements from ECP in 2016

OpenMP in the Exascale Era: Strengths and Challenges

Advances	in	OpenMP		in	last	3	years	have	posiEoned	it	well	for	a	dominant	role	at	Exascale	
	
•  Evolving	the	standard	to	address	increasing	architectural	complexity	is	being	successfully	
demonstrated	

•  Affinity	
•  Offload	
•  MulE-level	Memory	
	

•  Reference	implementaEons	and	research	prototyping	of	proposed	features	

•  ECP	SOLLVE	project	(SOLLVE:	Scaling	OpenMP	with	LLVM	for	Exascale	performance	and	portability,	
Barbara	Chapman,	Brookhaven	NaEonal	Laboratory	(BNL)	with	ANL,	LLNL,	ORNL,	Rice	Univ.,	UIUC)	

	

§ 9/25/17	 § 56	

OpenMP in the Exascale Era: Strengths and Challenges

Significant		challenges	will	need	to	be	confronted	going	forward:	
	

•  ConEnued	support	for	a	broad	range	of	heterogeneity(in	progress)	

•  Performance	Portability	(In	progress)	

•  Increased	Complexity	(needs	to	be	contained)	

•  Backward	compaEbility	–	gerng	things	right	first	Eme	

•  Broaden	adopEon	beyond	current	user	community:	more	users	–	more	feedback	

•  Expand	into	addiEonal	applicaEon	domains:	Machine	Learning,	AI	…	
	
	

§ 9/25/17	 § 57	

Performance Portability: what might help

• Centers	of	Excellence	–	working	well	
• COEPP	workshops	
• Hackathons	

•  InteroperaEon	with	DSLs,	e.g.	RAJA	

	
•  Increasing	consideraEon	of	including	a	‘descripEve’	capability	

• Support	for	architectural	features	such	as	Unified	Memory	

§ 9/25/17	 § 58	

Performance Study of OpenMP+RAJA

•  Lulesh	2.0	on	OpenPower	S822LC	“Minsky”	–	Power	8	and	Pascal	GPU	
•  Comparison	of	loop	execuEon	Emes	when	using	vanilla	OpenMP	vs	RAJA+OpenMP	

§ |

5
9

-20

0

20

40

60

80

100

K1 K2 K3.1 K3.2 K4.1 K4.2

P
er

ce
nt

ag
e

D
iff

er
en

ce

Size=100 SMT=1

-10

0

10

20

30

40

50

60

K1 K2 K3.2 K3.1 K4.1 K4.2

P
er

ce
nt

ag
e

D
iff

er
en

ce
 Size=12

Power 8 Tests
• No impact in memory bandwidth-bound loops
• Missing vectorization limits compute-bound loops
• How to fix: change RAJA std::iteration space use to plain old

loop / improve LLVM vectorizer

Pascal GPU Tests
• No performance impact of using lambda in most cases

§ Register allocation figures almost identical
• One loop shows bad performance

§ Only difference with vanilla OpenMP is loading of captured
arguments in loop body

§ Can be fixed in compiler

§ 60

Concluding Thoughts

• The	Programming	Model	Landscape	is	huge	
• Vendor	driven:	Exploit	proprietary	HW	features;	Can	create	‘lock-in’	
• Standards	Driven:	Create	a	unified	approach	that	benefits	end	users	
• Research	oriented:	Govt	funded;	University	driven	

•  Plethora	of	high	level	abstracEons	and	home	grown	DSLs	

• Few	new	models	have	captured	the	field	in	the	last	10	years	
• Many	have	fallen	by	the	wayside	
• Established	hybrid	models	conEnue	to	have	the	most	tracEon(MPI	+	X)	

OpenMP	has	made	significant	progress	in	last	20	years	
• Need	to	seize	the	moment,	gain	increased	adopEon,	and	capture	the	broader	
applicaEon	spaces	at	Exascale	and	beyond!	

	

Thank you!

IBM Systems

ibm.com/systems/hpc

| 61

