
OPENMP IN CLASSIFIER DESIGN

Boguslaw Cyganek, Michal Wozniak

AGH University of Science and Technology

Cracow, Poland

OpenMPCon – DEVELOPERS CONFERENCE

3-5 October 2016, Nara, Japan

An overview:

2

 Data classification – new trends.

 Classifier design for parallel run.

 Implementation and practical issues.

 Case study (tensor classifier)

 Conclusions.

3

Classifiers are algorithms that, given features, respond class of

unknown objects.

These can be supervised, i.e. trained from known examples, or

unsupervised which can discover some regularities in data.

Their examples are ample, from spam filters, text search engines, up

to face recognition, car security systems with road signs recognition,

driver sleepiness alert, unmanned vehicle maneuvering, and many

more.

Introduction

4

Main parameters of classifiers are accuracy and operation speed.

In this talk we concentrate on the latter and provide some design

patterns and recipes on parallel implementations of selected

classifiers using OpenMP.

Our main application domain are classifiers used in computer vision

and streams of big data, though the presented methods can be

easily exploited in other branches of classification problems.

Introduction

5

Data classification

- Intro and latest breakthroughs

Classification of multi-dimensional data

6

CLASSIFIERTraining dataset

Classification of multi-dimensional data

7

https://en.wikipedia.org/wiki/Iris_flower_data_set

Classification of multi-dimensional data

8

https://en.wikipedia.org/wiki/Iris_flower_data_set

Petal

Sepal

Classification of multi-dimensional data

9

CLASSIFIER

Feature vector

Classifiers – main types, and latest breakthroughs

10

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)

• Support vector machines (max. Separation)

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra

• Adaptive boost (AdaBoost)

Let’s name the most popular ones and their basic properties:

Classifiers – main types, and latest breakthroughs

11

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)  deep architectures (CNN)

• Support vector machines (max. Separation)

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra

• Adaptive boost (AdaBoost)

Let’s name the most popular ones and their basic properties:

Classifiers – main types, and latest breakthroughs

12

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)  deep architectures (CNN)

• Support vector machines (max. Separation)  kernel methods

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra

• Adaptive boost (AdaBoost)

Let’s name the most popular ones and their basic properties:

Classifiers – main types, and latest breakthroughs

13

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)  deep architectures (CNN)

• Support vector machines (max. Separation)  kernel methods

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra  tensor methods

• Adaptive boost (AdaBoost)

Let’s name the most popular ones and their basic properties:

Classifiers – main types, and latest breakthroughs

14

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)  deep architectures (CNN)

• Support vector machines (max. Separation)  kernel methods

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra  tensor methods

• Adaptive boost (AdaBoost)  classifier ENSEMBLES (here we go „parallel” as well)

Let’s name the most popular ones and their basic properties:

Classifiers – literature I like

15

Trevor Hastie; Robert Tibshirani; Jerome Friedman (2009). The Elements of

Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York:

Springer.

Richard O. Duda, Peter E. Hart, David G. Stork (2001). Pattern Classification, 2nd

Edition, Wiley.

S. Theodoridis and K. Koutroumbas (2009). Pattern Recognition, 4th ed., Academic

Press

http://statweb.stanford.edu/~tibs/ElemStatLearn/download.html

Classifiers – implementations / performance issues

16

• High accuracy requirement !!

• Massive data

• Massive data coming in streams (concept drift)

• Real-time answer requirement

• Training / re-training time requirement

• Mobile / embedded platform requirement

• …

• Choosing proper classifier to the task (no free lunch theorem)

• Choosing proper architecture (know your platform – do I need to learn assembly?)

• Choosing the right TOOLS

• Ready library (?) ok, but not always …

• Go parallel !!

17

Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition by James

Reinders, Jim Jeffers and Avinash Sodani, 2016, by Morgan Kaufmann, ISBN 978-0-12-809194-4.

• Use domain paralellism – analyse your domain for paralellism (pattern recognition)

• Increase thread parallelism – think of data sharing and high degree of independent

taks

• Exploit data parallelism – split data and apply the same algorithm

• Improve data locality – arrange the algorithms to minimazie data movements, keep

data compact, try to fit data into cache (can be forced by a programmer)

Know your hardware ! (nodes, cores/threads, memory organization, Xeon, GPU, etc.)

But think of a generic platform (unless a special purpose tuned system is created)

Algorithm design for parallelism

18

• Designing for parallel implementation

• Think of a „task” rather than of a „thread”, think of a paralel „data flow”

• Design work-flow

Factoring software for parallelism – decomposing into levels of parallelism but with data

locality in mind.

Barriers and other synchronization mechanisms are the enemy of scaling (i.e.

employing more cores, threads, vectors, etc.)

Algorithm design for parallelism

Classifiers – implementations / performance issues

19

• Parallel software – threads?

• GPU (CUDA, OpenCL)?

• FPGA?

• Hybrid solution?

• Create threads by yourself

• Use MPI

• Use TBB

• Use OpenMP

Classifiers – using OpenMP

20

• k nearest neighbor (the simplest idea)

• Bayes classifiers (need probability estimations)

• Neural networks (different types)  deep architectures (CNN)

• Support vector machines (max. Separation)  kernel methods

• Decision trees (intuitive rules)

• Subspace projections (PCA, Fisher, canonical correlation, etc.)

• Multi-linear algebra  tensor methods

• Adaptive boost (AdaBoost)  classifier ENSEMBLES (here we go „parallel” as well)

Parallel

regions
parallel

loops

(nested)

SIMD

Cache

blocking

21

OpenMP
Especially for task level parallelism

Pros:

• Minimally interfere with code development

• Transparent to the not supporting compilers

• Allows easy code refactoring

Cons:

• Rather for shared memory space systems

• Some problems when dealing with objects (see Cyganek & Sieberts)

• Not all features implemented on some platforms (e.g. Microsoft Visual 2015 vs. Intel)

Cyganek B.: Adding Parallelism to the Hybrid Image Processing Library in Multi-Threading and Multi-Core

Systems. 2nd IEEE International Conference on Networked Embedded Systems for Enterprise Applications

(NESEA 2011), Perth, Australia, 2011

22

OpenMP – New features

Nested loop parallelism

Vectorization - #pragma omp simd do single-instruction-multiple-data

#pragma omp vector enables or disables vectorization of a loop

#pragma ivdep give a hint about data dependencies

Data alignement to help in vectorization

- Data are moved efficiently if aligned on specific byte boundaries (e.g. Xeon 64-byte

boundary)

What to do?

- Align the data (e.g. __declspec(align(64)) double array[1024];

- Explicitly inform the compiler (e.g. __assume_aligned(ptr, 64)

#pragma vector aligned

Use vectorization advisor (Xeon Phi, Intel)

23

OpenMP – Would be nice…

OpenMP 4.0 standard includes support of accelerators (GPU, DSP, Xeon Phi, and so

on)

OpenACC a similar idea to OpenMP and (potentially) easy to use. However, only few

compilers (PGI, etc.).

Still lacking the tools on some platforms (porting workhours problem).

https://parallel-computing.pro/index.php/9-cuda/43-openmp-4-0-on-nvidia-cuda-gpus

S. Antao (2014). LLVM Support for OpenMP 4.0 Target Regions on GPUs

Supercomputing

24

Design of Parallel Architectures

of Classifiers Suitable for

Intensive Data Processing

25

Design of Parallel Architectures of Classifiers

C1

TRAINING DATA

Training Module

C1 C1

DATA SPLITTER

Serial Cascade of Classifiers

At first - two of the most popular architectures of ensembles of classifiers:

the serial and the parallel ones

26

Design of Parallel Architectures of Classifiers

At first - two of the most popular architectures of ensembles of classifiers:

the serial and the parallel ones

An example of such a system is the face detection method by Viola and Jones.

Training is done with the AdaBoost which amplifies response on poorly

classified examples. Such strategy imposes data decomposition into sets of

usually decreasing number of elements.

Data processing in a serial chain of classifiers is effective if member classifiers

are able to operate in a pipeline mode. One of the requirements in this case is

that each classifier in the chain consumes the same time quant for data

processing. The penalty of using a cascade is a delay necessary to fill up the

processing line which is proportional to the number of used classifiers.

However, in practice these requirements are not easy to fulfill.

P. Viola and M. Jones, Robust real-time face detection, Proceedings of the International

Conference on Computer Vision, 2001, pp. 747-755

R. Polikar, Ensemble Based Systems in Decision Making. IEEE Circuits and Systems

Magazine, 2006, pp. 21-45

27

Design of Parallel Architectures of Classifiers

C1

TRAINING DATA

Training Module

C2

CM

DATA SPLITTER

Parallel Cascade of Classifiers

Ci F
 U

 S
 I
 O

 N

At first - two of the most popular architectures of ensembles of classifiers:

the serial and the parallel ones

28

Design of Parallel Architectures of Classifiers

In this case all classifiers are assumed to operate independently which is a big

advantage considering implementation and execution time. However, all partial

responses need to be synchronized and collected by the answer fusion module

which outputs a final response. There are different methods of training of the

member classifiers Ci.

Some of the most popular are data bagging and data clustering.

There are many examples of the parallel classifier systems organized ENSEMBLES.

In this talk I’ll present the tensor based classifiers (HOSVD) trained with different data

partitions obtained with data bagging

At first - two of the most popular architectures of ensembles of classifiers:

the serial and the parallel ones

29

Design of Parallel Architectures of Classifiers

The role of a data splitter is to arrange the training process in order to obtain the best accuracy

of the ensemble. The two tested methods are as follows:

• Bagging - consists of creating a number of data sets Di from the training set D with a

uniform data sampling with replacement. As shown by Grandvalet, bagging reduces variance of

a classifier and improves its generalization properties. Each set Di is used to train a separate

member of the ensemble, which contains less data than D. Thanks to this data decomposition a

better accuracy can be obtained due to a higher diversity. Also, the problem of processing

massive data can be greatly reduced. It is also possible to extend the ensemble with a new

classifier if new training data are available at a later time.

Data Splitters

S. Theodoridis and K. Koutroumbas (2009).Pattern Recognition, 4th ed., Academic Press

Y. Grandvalet (2004). Bagging equalizes influence. Machine Learning, Vol. 55, pp. 251-270

30

Design of Parallel Architectures of Classifiers

The role of a data splitter is to arrange the training process in order to obtain the best accuracy

of the ensemble. The two tested methods are as follows:

• Data clustering - consists in usually unsupervised partitioning of the input dataset D into

typically disjoint sets Di. In our previous systems the k-means as well as their fuzzy and kernel

versions were used. In this case a first step is the choice of data centers. Then data distances

to each center are computed and the points are assigned to their nearest centers. After that,

positions of the centers are recomputed to account for new members of that partition. The

procedure follows until there are no changes in data partitioning. Similarly to bagging, splitting

by clustering also allows better accuracy and data decomposition useful in parallel realizations.

Data Splitters

L.I. Kuncheva, Combining Pattern Classifiers. Methods and Algorithms. Wiley Interscience,

2005

A. Rahman and B. Verma, Cluster-based ensemble of classifiers. Expert Systems, 2012

B. Cyganek, One-Class Support Vector Ensembles for Image Segmentation and Classification.

Journal of Mathematical Imaging & Vision, Vol. 42, No. 2-3, Springer, 2012, pp. 103–117

31

Design of Parallel Architectures of Classifiers

Choice of the member classifiers depends on many factors, such as type and

dimensionality of data. However, the classifiers need to be chosen in a way to

assure the best accuracy and speed of operation, especially when processing

massive vision data.

Good results were obtained in the tested systems using the tensor classifiers, as

well as using the OC-SVMs.

Selection of the Member Classifiers

B. Cyganek, One-Class Support Vector Ensembles for Image Segmentation and

Classification. Journal of Mathematical Imaging & Vision, Vol. 42, No. 2-3, Springer,

2012, pp. 103–117.

B. Cyganek, Ensemble of Tensor Classifiers Based on the Higher-Order Singular

Value Decomposition. HAIS 2012, Salamanca, Springer, Part II, LNCS 7209, 2012,

pp. 578–589

32

Case study – just a taste of …

Classification of multi-dimensional data

33

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

x

y

l

Variety of dimensions and formats …

Classification of multi-dimensional data

34

CLASSIFIER

Feature vector

cols

ro
w

s

Classification of multi-dimensional data

35

CLASSIFIER

Feature vector

cols

ro
w

s

Classification of multi-dimensional data

36

CLASSIFIER

Feature vector

cols

ro
w

s

Classification of multi-dimensional data

37

CLASSIFIER

Feature vector

cols

ro
w

s

Classification of multi-dimensional data

38

CLASSIFIER

cols

ro
w

s

Classification of multi-dimensional data

39

CLASSIFIER

cols

ro
w

s

Color image is a 3D tensor

40

Patterns, tensors and their

decompositions

Tensors for multi-dimensional data processing:

41

A hyperspectral image with selected regions of different reflectance properties.

Series of hyperspectral images naturally form 3D tensors with two spatial

dimensions (x,y) and one spectral λ.

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

400 2400

Wavelength (nm)

R
e

fl
e

c
ta

n
c
e

0

1

x

y

l

42

An example of a 3D tensor

representing MRI signals

X

Y

M

Tensors for multi-dimensional data processing:

Tensors for multi-dimensional data processing:

43

A tensor T of P dimensions of values N1, N2, …, NP, is denoted as follows

  
  1 2 PN N N

A single element t of T is addressed providing its precise position by a series of

indices n1, n2, …, nP,


1 2 1 2P Pn n n n n n
t      

1 1 2 2
1 , 1 , , 1

P P
n N n N n N

in the equivalent function-like notation

 
1 2 1 2

, , ,
Pn n n P

t n n n

Tensors for multi-dimensional data processing – an example:

44

A 333 tensor and possible representation with three frontal 2D slices.

0

0

12 0

4 1

-132

N1

N2

N3

-2

4

0 0

10 0

012

1

4

1 -1

0 4

125

0

0

12 0

4 1

-132

  
 

  
 
  

12 0 0 1 1 1 0 0 2

0 4 1 4 0 4 4 10 0

2 3 1 5 2 1 2 1 0

1

2

 3

45

Albert Einstein in 1921

https://en.wikipedia.org/wiki/Albert_Einstein

Tullio Levi-Civita

Bernhard Riemann in 1863

46

The impossible world of MC Escher

47
https://en.wikipedia.org/wiki/M._C._Escher

The impossible world of MC Escher

Types of tensor decompositions:

48

 Higher Order Singular Value Decomposition (HOSVD, ~Tucker)

 Rank-1 (Canonical decomposition, CANDECOMP/PARAFAC or CP)

 Best Rank-Rk (~Tucker)

 Nonnegative matrix and tensor decompositions

Types of tensor decompositions:

49

 Higher Order Singular Value Decomposition (HOSVD, ~Tucker)

 Rank-1 (Canonical decomposition, CANDECOMP/PARAFAC or CP)

 Best Rank-Rk (~Tucker)

 Nonnegative matrix and tensor decompositions

50

More on

Higher Order Singular Value Decomposition

(HOSVD, ~Tucker)

applications come soon…

51

1 2 m n PN N N N N   
 A tensor:

Basic concepts of the multilinear algebra – HOSVD:

can be decomposed to

1 1 2 2 P P
   S S S

Sk denotes a mode matrix, which is a unitary matrix of dimensions NkNk spanning

the column space of the matrix T(k) obtained from the mode-n flattening of T;

1 2 m n PN N N N N   
 

is a core tensor of the same dimensions as T.

52

Visualization of the HOSVD for a 3D tensor

Basic concepts of the multilinear algebra – HOSVD:

S1

S2

S3

N1

N2

N3

N1

N1

N2

N2

N3

N3

N1

N2

N3

Nr

Nr

   
1 1 2 2 3 3
S S S

53

Properties of the core tensor:

Basic concepts of the multilinear algebra – HOSVD:

kn a kn bTwo sutensors

obained by fixing the nk index to a, or b respectively, are orthogonal

0
k kn a n b 

 

Subtensors can be ordered according to their norms

1 2
0

k k k Pn n n N  
   

k

k

n a a



 is the a-mode singular value of T

Each i-th vector of the matrix Sk is the i-th k-mode singular vector

2

1

54

Basic concepts of the multilinear algebra – HOSVD:

1 1 2 2 P P
   S S S

1

PN
h

h P P
h

  s

sh
P are columns of the unitary matrix SP.

N1

N2

N3



s
1

+ + ... +

N3 components

N1

N3

N2

s
2

N1

N3

N2

s

N1

N3

N2

N3

1 2
N3

1 1 2 2 1 1h P P 
   S S S

the basis tensors

Th are orthogonal. Hence, Th constitute a basis. This result allows

construction of classifiers based on the HOSVD decomposition!

55

Basic concepts of the multilinear algebra – HOSVD:

1 1 2 2 P P
   S S S

1

PN
h

h P P
h

  s 1 1 2 2 1 1h P P 
   S S S

the basis tensors

sh
P are columns of the unitary matrix SP.

N1

N2

N3



s
1

+ + ... +

N3 components

N1

N3

N2

s
2

N1

N3

N2

s

N1

N3

N2

N3

1 2
N3

Th are orthogonal. Hence, Th constitute a basis. This result allows

construction of classifiers based on the HOSVD decomposition!

Pattern recognition in the HOSVD spanned multilinear spaces:

56

Pattern recognition with HOSVD boils down to testing a distance of a given test
pattern Px to its projections in each of the spaces spanned by the set of the bases Th.

This can be done by computing the following minimization problem



 
2

, 1

min
i
h

N
i i

x h h
i c h

P c

where ci
h are the coordinates of Px in the space spanned by Th

i, N≤NP denotes a

number of chosen dominating components.




 
2

1

ˆ ˆ,
N

i

i h x
h

P

.,. denotes the scalar product of the tensors, Px and Th
i are normalized. Returned is a

class i for which the corresponding i from is the largest .

Due to the orthogonality of the tensors Th
i, the above reduces to the maximization of

the following parameter

Pattern recognition in multilinear spaces – practical issues

57

The higher N, the better fit, though at an expense of computation time. The

original tensor Ti of a class i is obtained from the available exemplars of the

prototype patterns for that class (which can be of different number).




 
2

1

ˆ ˆ,
N

i

i h x
h

P

Pattern recognition in multilinear spaces – practical issues

58

The higher N, the better fit, though at an expense of computation time. The

original tensor Ti of a class i is obtained from the available exemplars of the

prototype patterns for that class (which can be of different number).

Where to take the prototype tensors from?

For example, the patterns can be cropped from the training images(road signs)

which are additionally rotated in a given range (e.g. ±12° with a step of 2°) with

additionally added normal noise. Such a strategy allows each pattern to be trained

with different number of prototypes.




 
2

1

ˆ ˆ,
N

i

i h x
h

P

A word on implementations

60

The HOSVD algorithm:

1. For each k=1, …, P do:

a. Flatten tensor T to obtain T
k
;

b. Compute S
k

from the SVD decomposition

of the flattening matrix T
k

T
k
=S

k
V
k
D
k
T

2. Compute the core tensor from the formula:

1 1 2 2

T T T

P P
   S S S

Experimental setup – implementation issues:

The HOSVD algorithm relies on successive application of the matrix SVD

decompositions applied to each of the flattened versions T(k) of the original tensor T.

In result the Sk matrices are obtained.

The problem – how to avoid data copying for different modes of T(k) in HOSVD?

61

The HOSVD algorithm:

1. For each k=1, …, P do:

a. Flatten tensor T to obtain T
k
;

b. Compute S
k

from the SVD decomposition

of the flattening matrix T
k

T
k
=S

k
V
k
D
k
T

2. Compute the core tensor from the formula:

1 1 2 2

T T T

P P
   S S S

Experimental setup – implementation issues:

The HOSVD algorithm relies on successive application of the matrix SVD

decompositions applied to each of the flattened versions T(k) of the original tensor T.

In result the Sk matrices are obtained.

The problem – how to avoid data copying for different modes of T(k) in HOSVD?

Can be parallelized (Cyganek, 2013)

A class hierarchy for efficient tensor representation

62

TImageFor

fData : pixel type = val

Pixel Type

+ GetPixel(matrix_index) : PixelType

N

1..*

Composite

relation

TFlatTensorFor

fTensorMode : int

Element

Type

TFlatTensorProxyFor

Element

Type

- fMotherTensor : TFlatTensorFor &

+ SetPixel(matrix_index) : PixelType

HIL Library

+ GetElement(TensorIndex) : ElType

+ SetElement(TensorIndex, ElType)

Offset_ForwardCyclic

 (TensorIndex, MatrixIndex, Mode)

Offset_BackwardCyclic

 (TensorIndex, MatrixIndex, Mode)

fIndexVector: vector

+ GetElement(TensorIndex) : ElType

+ SetElement(TensorIndex, ElType)

Action delegation to

the mother tensor

+ GetPixel(matrix_index) : PixelType

+ SetPixel(matrix_index) : PixelType
Matrix data access

with mapped matrix

index to the proxy

mode

Matrix

representation

Offset_BackwardCyclic

 (MatrixIndex, TensorIndex, Mode)

Offset_ForwardCyclic

 (MatrixIndex, TensorIndex, Mode)

Proxy Design Pattern

63

TensorAlgebraFor

Best_Rank_R_DecompFor

T

S_Matrix_Initializer

+ operator()(const FlatTensor & T,

const RankVector & ranks,

SingleMatrixVector & S_vector) = 0 : bool

T

OrphanInitializedMatrices_S_UniformRandomGenerator

T

+ operator()(const FlatTensor & T, const RankVector & ranks, SingleMatrixVector & S_vector) : bool

T

fMatrix_Initializer_Obj : S_Matrix_Initializer< T, ACC > *

11

+ FindDominantSubspace(

 Compute_SVD & svd_calculator,

 const typename FlatTensor::DataMatrix & S_hat,

 typename FlatTensor::DataMatrix & S,

 int requested_tensor_Rank_k,

 int tensor_index_k);

+ operator() (const FlatTensor & T,

const RankVector & requested_ranks,

typename SingleMatrixVector & S_vector,

const AccumulatorType epsilon = 1e-6,

const int max_iter_counter = 1000,

int * num_of_iterations = 0) : FlatTensor_AP

1

TFlatTensorFor

fTensorMode : int

+ GetElement(TensorIndex) : ElType

+ SetElement(TensorIndex, ElType)

fIndexVector: vector

T

+ TFlatTensorFor(

 const TensorElem_IndexVector & indexVec,

 int tensor_mode,

 ECyclicMode cyclicMode = kForward)

N

HOSVD

+ operator()(const TFlatTensorFor< U > & T,

SingleMatrixVector & S_vector)

: FlatTensor_AP

T

Software framework for tensor representation and decomposition:

DeRecLib available on the Internet for free ...

64

TensorAlgebraFor

Best_Rank_R_DecompFor

T

S_Matrix_Initializer

+ operator()(const FlatTensor & T,

const RankVector & ranks,

SingleMatrixVector & S_vector) = 0 : bool

T

OrphanInitializedMatrices_S_UniformRandomGenerator

T

+ operator()(const FlatTensor & T, const RankVector & ranks, SingleMatrixVector & S_vector) : bool

T

fMatrix_Initializer_Obj : S_Matrix_Initializer< T, ACC > *

11

+ FindDominantSubspace(

 Compute_SVD & svd_calculator,

 const typename FlatTensor::DataMatrix & S_hat,

 typename FlatTensor::DataMatrix & S,

 int requested_tensor_Rank_k,

 int tensor_index_k);

+ operator() (const FlatTensor & T,

const RankVector & requested_ranks,

typename SingleMatrixVector & S_vector,

const AccumulatorType epsilon = 1e-6,

const int max_iter_counter = 1000,

int * num_of_iterations = 0) : FlatTensor_AP

1

TFlatTensorFor

fTensorMode : int

+ GetElement(TensorIndex) : ElType

+ SetElement(TensorIndex, ElType)

fIndexVector: vector

T

+ TFlatTensorFor(

 const TensorElem_IndexVector & indexVec,

 int tensor_mode,

 ECyclicMode cyclicMode = kForward)

N

HOSVD

+ operator()(const TFlatTensorFor< U > & T,

SingleMatrixVector & S_vector)

: FlatTensor_AP

T

Software framework for tensor representation and decomposition:

Object-oriented design (templates, C++)

http://home.agh.edu.pl/~cyganek/cyganekobject.htm

Cyganek B.: Object Detection and Recognition in

Digital Images Wiley, 2013

DeRecLib available on the Internet for free ...

65

This was a single tensor

classifer but let’s build an

ensemble of such to run

parallel…

Parallel Implementation of the Ensemble of Tensor Classifiers

66

Tensor processing usually results in high computational and memory demands. The former can

be alleviated by parallel implementation of the specifically chosen parts of the system.

In this approach we exploit both strategies for parallel decompositions:

 Data decomposition.

 Functional decomposition.

However, in many aspects parallel operation of some of the software blocks leads to higher

memory demands. Therefore both aspects need to be considered together.

Parallel Implementation of the Ensemble of Tensor Classifiers

67

We have already seen

a general scheme…

C1

TRAINING DATA

Training Module

C2

CM

DATA SPLITTER

Parallel Cascade of Classifiers

Ci F
 U

 S
 I
 O

 N

Parallel Implementation of the Ensemble of Tensor Classifiers

68

Multi-Class

HOSVD1

Multi-Class

HOSVDi

Multi-Class

HOSVDN

Classifier

Combiner

Data multiplexer (bagging, clustering)

ENSEMBLE OF HOSVD CLASSIFIERS

Test pattern

Data filtering (feature extraction)

Training dataset

for class 1

Training dataset

for class k

Training dataset

for class k

Architecture of the

ensemble composed of

the multi-class HOSVD

classifiers.

Each member multi-

class classifier is

trained with its

partition of training

data from each class.

Data partitions are

obtained due to the

bagging process

69

Some results…

70

Experimental results:

USPS dataset contains selected and preprocessed scans of the handwritten digits from

envelopes by the U.S. Postal Service

The database is divided into the 7291 training and 2007 testing partitions.

The system was implemented in C++ and run on the computer with the 8 GB RAM

and Pentium Core Q 820 @ 1.73GHz.

71

Experimental results:

Each test and train pattern originally is in a form of a 1616 gray level image.

Since this dataset is perceived as a relatively difficult for machine

classification (reported human error is 2.5%), it has been used for

comparison of different classifiers

Each experimental setup was run number of times (from 3 to 10,

depending on computational complexity) and an average answer is

reported. In all cases the Gaussian noise was added to the input image at

level of 10%,

72

Experimental results:

Influence of the number of data points used in bagging process on accuracy of the

ensembles with different number of members

Accuracy vs. number of classifiers in the ensemble for 3 sizes of data samples in the

bagging (192, 256, 560). Input images of size 1616. In number of components H=16

73

Experimental results:

Performance of the ensembles of different number of members in respect to the two

different sizes of the input images: 1616 vs. 3232 pixels

Accuracy vs. number of classifiers in the ensemble for two different sizes of input

images: original (1616) vs. enlarged by image warping (3232). In both cases 192

data samples (images) were used in bagging. Components H=16.

74

Experimental results:

Accuracy vs. number of components H. Input images were warped to 3232,

number of classifiers in ensemble set to 15, bagging partitions of 192 images used

75

Experimental results:

Accuracies and parameters for each digit separately:

Experimental setup: 15 members in the ensemble, input data transformed to 3232

resolution, 192 training images from bagging, H=16 components.

76

OpenMP again…

System training speed-up ratio of the serial and parallel implementations for different

number of member classifiers E in the ensemble and different chunks of data from

bagging. 64 chunks.

77

OpenMP again…

System training speed-up ratio of the serial and parallel implementations for different

number of member classifiers E in the ensemble and different chunks of data from

bagging. 128 chunks (b).

Conclusions

79

1. We gain speed improvement (on different levels and thanks to

OpenMP)

2. We obtained better accuracy (due to the ensemble of classifiers)

3. We made easier training (due to boosting – smaller data partitions)

What we have gained with parallel approach?

Future…?

Our DESIGN into a parallel system lead us to an ENSEMBLE of classifiers

1. Think of splitting data

2. Think of many (simple) classifiers

3. Try to optimize even a single classifier in the ensemble

So, when starting/improving a classification system

Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition by

James Reinders, Jim Jeffers and Avinash Sodani, 2016, published by Morgan

Kaufmann, ISBN 978-0-12-809194-4.

High Performance Parallelism Pearls Volume One + Two by Jim Jeffers and James

Reinders, 2015, published by Morgan Kaufmann, ISBN 978-0-128-02118-7.

Literature
Application Programming Interface Version 4.5 OpenMP Architecture Review Board

November 2015

http://www.openmp.org

Application Programming Interface Examples Version 4.0.2 –OpenMP Architecture

Review Board March 2015

http://www.openmp.org

Cyganek B.: Object Detection and Recognition in Digital Images Wiley, 2013

Thank you!

