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È Introduction and history  
È Prior/standard approaches  
È Review of TSX on Intel 
È Review of AMG  
È Review of TM for iterative methods, such as AMG  
È Experimental results 
     -  Problem, mesh, code and experimental setup 
     -  Convergence studies 
 -  Performance 
È Conclusions 
 



È Motivation:  Increased number of cores per node for the foreseeable 
future ð shared memory parallel programming or threading  

È In 2011:  IBM Blue Gene/Q: first production -quality HTM system  
È In 2013:  Intel Haswell :  HTM system called TSX with two flavors  
È Predecessor to HTM:  STM (Software Transactional Memory) by 

IBM, Intel and Sun 
È Current work is related to our IWOMP 2010, 2012, 2014, and 2015 

papers 
È Direct Methods: Multiple threads in a shared-memory setting can 

lead to race conditions, memory conflicts and incorrect execution 
È Iterative Methods:  Multiple threads do lead to race conditions, but  

incorrect execution is hard to quantify;  result: inefficiency  instead 
È Current work:  Study and compare the effects of:   

Á (i) Restricted Transactional Memory (RTM ð part of TSX),  
Á (ii) Hardware Lock Elision (HLE ð part of TSX), and 
Á (iii) OpenMP critical  

Can TSX benefit iterative methods ? 



È Mutual exclusion:  One thread at a time ð OMP critical   
 - very safe, but not very scalable 
 - potential deadlocks  
 - convoying of execution:  poor performance  
È OpenMP atomics:  Non -blocking protection ð OMP atomic  
 - compare-and-swap (CAS)   
      - load-linked store conditional (LL/SS)  
 - limited to single instruction  
 - several atomics are not equivalent to one large transaction 
È Lock elision: Speculative technique - similar to TM (on 

Haswell/Broadwell)  
 - optimistic execution of a critical section  
 - elides or bypasses acquiring the lock  
 - uses cache coherency mechanism to track reads/writes  
 - transaction size limited to cache size ð not as general as TM  
 - if there is no hardware support, defaults to acquiring the lock  
 

 Only OMP critical is available/applicable as comparison 



È TM solves the concurrency control problem  

È TM is not new:  goes back to Herlihy  and Moss (1993) 

È TM raises the level of abstraction 

È It can coexist with current OpenMP concurrency 
mechanisms 

È TM is deadlock-free and expected to be scalable 

È Ease of use is a key consideration 

È Simple syntax, e.g. IBMõs current OpenMP extension: 

 
 

#pragma tm_atomic [(safe_mode)] 

{ 

   < code > 

} 

 Need high level support for TM 



È Intel TSX = Transactional Synchronization Extensions 
Á cache coherency protocol detects memory access conflicts 

Á this is transactional memory (TM) with restricted working set  

Á this allows coarse-locked codes to behave as if implemented with fine-
grain reader-writer locks  

 

È Hardware Lock Elision (HLE): extension for existing locks  
Á processor speculates critical section, but preserves all lock semantics 

Á in case of a conflict the lock is taken òfor realó 

 

È Restricted Transactional Memory (RTM): new transaction 
instructions  
Á explicit begin and commit transaction operations, no visible lock  

Á there has to be a non-speculative back-off path in case of conflict 

 

 
  Two types of TM with hardware support 



È Fundamental requirement: do not break any existing code 
Á new functionality is introduced as hints  

 

È Three options were considered 
Á pragmas to prefix existing lock routines with the desired hint  

Á complete set of new locking routines and lock types 

Á new lock initialization routines to use with the existing lock API  

Ğminimal code modification, allows for incremental code adoption  
 

È OpenMP lock review  
Á variable of type omp_lock_t  or omp_nest_lock_t  

Á must be initialized before first use with omp_init [_nest]_lock()  

Á routines to initialize, set, unset, and test a lock and finally to destroy it  

Software was needed for convenient usage of Intelôs TSX 



È Two new lock init  functions provide hints to the runtime system  
Á void  kmp_init [_nest]_ lock_hinted ( omp[_nest]_ lock_t *, 

omp_lock_hint  )  

È The kmp_lock_hint  type lists high -level optimization criterions:  
Á kmp_lock_hint_none  

Á kmp_lock_hint_uncontended    optimize for an uncontended lock  
Á kmp_lock_hint_contended    optimize for a contended lock  
Á kmp_lock_hint_nonspeculative     do not use hardware speculation 
Á kmp_lock_hint_speculative    use HLE hardware speculation 
Á kmp_lock_hint_adaptive    adaptively use RTM speculation 
Á é plus room for vendor-specific extensions 

È Fundamental requirement: do not break any existing code 
È Open source OpenMP runtime ð part of LLVM as well 

Software was provided for convenient usage of Intelôs TSX 



È Few/no benchmarks  exist for experimentation  with TM  

È Numerical methods can be divided into two large classes: 
Á Direct methods (exactly serializable) 

Á Iterative methods (not easily serializable) 

È For iterative methods:  what is the òwrongó answer?  

È Most thread synchronizations will converge -- eventually  

È Best solution:  the one that is fastest to converge 

È Synchronization may not be crucial or necessary for convergence 

È However: unsynchronized code is incorrect code (and unpredictable) 

È Therefore:  threaded code should be synchronized 

Need to study the effects of synchronization mechanisms 





where 

- ui is the approximation itself 

- fi is the right hand side 

- Aij represents the j-th component of row i in matrix A 

- l can be either n or n+1, depending on óageô 

Å Smoothers are a critical part of AMG 

Å Reduce erors  in the direction of eigenvectors 

Å Simple point-wise smoothers like Jacobi or Gauss-Seidel (G-S) 

reduce errors associcated with large eigenvectors rapidly 

Å It can be symbolically represented by the equation: 

Å This is parallelized by partitioning A row-wise 

Å Hybrid Gauss-Seidel has Jacobi-like update on node or thread boundaries 



- Nontrivial to parallelize because of the dependencies in ui: 

- Race conditions exist, where probability of conflicts is low, but nonzero 

- Transactional memory will synchronize differently than OpenMP critical 

- We have a write-after-read (WAR) conflict where the average itself might 

change during the averaging process 

È The same TM-assisted method used for mesh 
smoothing can also be used for Hybrid G-S 

È Indeed, the formulae look similar:  

for AMG:                                                                     for mesh smoothing: 





È Within the transaction we have a WAR (write -after-read) 
type update 

È The potential memory conflict comes from a variable being 
updated after it had been read (for another variableõs 
update by a different thread)  

È TSX rollbacks will then òrefreshó the stale variables 
È TSX will typically yield òfresheró, more up-to-date info 
È With HLE :  becomes OMP critical  upon conflict  
È With RTM : multiple retries are possible depending on 

KMP_ADAPTIVE_LOCK_PROPS = M, N: adaptive -lock 
È The only comparable alternative to TSX is omp critical  
È TSX has an effect on how the solution converges 
È Tradeoff:  RTM is more expensive but more òaccurateó 

TSX adds algorithmic aspects of its own. 



È 3-D sphere mesh with hexahedral finite elements 

È Two arbitrarily -placed material subdomains 

È Material coefficients a(x,y,z) are 1 and 1000 

 

Solving Scalar diffusion: 



Goal:  study convergence of AMG smoother 

È Ran on 1, 2, 4, 8, 16, 32 and 64 threads 
È Three modes of running with threads:  
ÁHLE 
ÁRTM 
ÁOpenMP critical  

È Modification of BoomerAMG  branch of hypre 
È Compared against HGS, l1 GS and l1 Jacobi 
È HMIS coarsening with extended+i interpolation  
È AMG -preconditioned GMRES as solver 
È Run on Intel Xeon E5-2695v4 (Broadwell), 64GB mem. 
È Turbo Boost, hyperthreading  and TSX enabled 
È Convergence measured in terms of residuals 

 



Å On 1 thread: RTM, HLE, critical and HGS identical to serial (not 

shown) 

Å On 2 threads: substantial difference between HGS and all 

other options; HGS approaches L1-Jacobi 

Å On 4 threads:  RTM, HLE, critical, serial are very close to each 

other; HGS deteriorates considerably, L1-GS does so slightly 

Å On all thread counts: no change in L1-Jacobi (thread invariant) 

 



Å On 8 threads: RTM, HLE, and critical remain close to serial; 

HGS stopped converging altogether 

Å On 64 threads: RTM, HLE, and critical remain close to serial; 

HGS does not converge; L1-GS deteriorates more 

Å On all thread counts: no change in L1-Jacobi (thread invariant) 

 

Adding synchronization to HGS resulted in convergence  



HLE is the overall best performer for this problem 

ÅNew way to measure performance 

(introduced at IWOMP 2014):  

 

 

 

 

 

where r is now residual (not actual 

error or ñdistance to exact solutionò) 

 

Å HLE, RTM and critical outperform 

all others by orders of magnitude 

(except on 1 thread) 

 
Å Orders of magnitude difference in performance between the various smoothers 

Å On 2 through 32 threads:  HLE is better than unsync 

Å On 2, 4 and 8 threads:  RTM is competitive 

Å On 4 through 32 threads:  HLE is better than all others  

Å For this problem HLE is overall ñbestò on 16 threads  


