
 Barna L. Bihari 1, James Cownie2, Hansang Bae2,
Ulrike M. Yang 1 and Bronis R. de Supinski1

1Lawrence Livermore National Laboratory , Livermore, California

2Intel Corporation , Santa Clara, California

OpenMPCon Developers Conference
Nara, Japan, October 3-4, 2016

Technical:
È Trent DôHooge (LLNL)
È Tzanio Kolev (LLNL)

Supervisory:
È Lori Diachin (LLNL)

Borrowed example and mesh figures:

È A.H . Baker, R.D. Falgout, Tz.V. Kolev, and U.M. Yang, Multigrid
Smoothers for Ultraparallel Computing , SIAM J. Sci. Comput., 33
(2011), pp. 2864-2887. LLNL-JRNL-473191.

Financial support:
È Dept. of Energy (DOE), Office of Science, ASCR
È DOE, under contract DE-AC52-07NA27344

http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf

INFORMATION IN THIS DOCUMENT IS PROVIDED òAS ISó. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark , are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Intel, Xeon, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intelõs compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor -dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

È Introduction and history
È Prior/standard approaches
È Review of TSX on Intel
È Review of AMG
È Review of TM for iterative methods, such as AMG
È Experimental results
 - Problem, mesh, code and experimental setup
 - Convergence studies
 - Performance
È Conclusions

È Motivation: Increased number of cores per node for the foreseeable
future ð shared memory parallel programming or threading

È In 2011: IBM Blue Gene/Q: first production -quality HTM system
È In 2013: Intel Haswell : HTM system called TSX with two flavors
È Predecessor to HTM: STM (Software Transactional Memory) by

IBM, Intel and Sun
È Current work is related to our IWOMP 2010, 2012, 2014, and 2015

papers
È Direct Methods: Multiple threads in a shared-memory setting can

lead to race conditions, memory conflicts and incorrect execution
È Iterative Methods: Multiple threads do lead to race conditions, but

incorrect execution is hard to quantify; result: inefficiency instead
È Current work: Study and compare the effects of:

Á (i) Restricted Transactional Memory (RTM ð part of TSX),
Á (ii) Hardware Lock Elision (HLE ð part of TSX), and
Á (iii) OpenMP critical

Can TSX benefit iterative methods ?

È Mutual exclusion: One thread at a time ð OMP critical
 - very safe, but not very scalable
 - potential deadlocks
 - convoying of execution: poor performance
È OpenMP atomics: Non -blocking protection ð OMP atomic
 - compare-and-swap (CAS)
 - load-linked store conditional (LL/SS)
 - limited to single instruction
 - several atomics are not equivalent to one large transaction
È Lock elision: Speculative technique - similar to TM (on

Haswell/Broadwell)
 - optimistic execution of a critical section
 - elides or bypasses acquiring the lock
 - uses cache coherency mechanism to track reads/writes
 - transaction size limited to cache size ð not as general as TM
 - if there is no hardware support, defaults to acquiring the lock

 Only OMP critical is available/applicable as comparison

È TM solves the concurrency control problem

È TM is not new: goes back to Herlihy and Moss (1993)

È TM raises the level of abstraction

È It can coexist with current OpenMP concurrency
mechanisms

È TM is deadlock-free and expected to be scalable

È Ease of use is a key consideration

È Simple syntax, e.g. IBMõs current OpenMP extension:

#pragma tm_atomic [(safe_mode)]

{

 < code >

}

 Need high level support for TM

È Intel TSX = Transactional Synchronization Extensions
Á cache coherency protocol detects memory access conflicts

Á this is transactional memory (TM) with restricted working set

Á this allows coarse-locked codes to behave as if implemented with fine-
grain reader-writer locks

È Hardware Lock Elision (HLE): extension for existing locks
Á processor speculates critical section, but preserves all lock semantics

Á in case of a conflict the lock is taken òfor realó

È Restricted Transactional Memory (RTM): new transaction
instructions
Á explicit begin and commit transaction operations, no visible lock

Á there has to be a non-speculative back-off path in case of conflict

 Two types of TM with hardware support

È Fundamental requirement: do not break any existing code
Á new functionality is introduced as hints

È Three options were considered
Á pragmas to prefix existing lock routines with the desired hint

Á complete set of new locking routines and lock types

Á new lock initialization routines to use with the existing lock API

Ğminimal code modification, allows for incremental code adoption

È OpenMP lock review
Á variable of type omp_lock_t or omp_nest_lock_t

Á must be initialized before first use with omp_init [_nest]_lock()

Á routines to initialize, set, unset, and test a lock and finally to destroy it

Software was needed for convenient usage of Intelôs TSX

È Two new lock init functions provide hints to the runtime system
Á void kmp_init [_nest]_ lock_hinted (omp[_nest]_ lock_t *,

omp_lock_hint)

È The kmp_lock_hint type lists high -level optimization criterions:
Á kmp_lock_hint_none

Á kmp_lock_hint_uncontended optimize for an uncontended lock
Á kmp_lock_hint_contended optimize for a contended lock
Á kmp_lock_hint_nonspeculative do not use hardware speculation
Á kmp_lock_hint_speculative use HLE hardware speculation
Á kmp_lock_hint_adaptive adaptively use RTM speculation
Á é plus room for vendor-specific extensions

È Fundamental requirement: do not break any existing code
È Open source OpenMP runtime ð part of LLVM as well

Software was provided for convenient usage of Intelôs TSX

È Few/no benchmarks exist for experimentation with TM

È Numerical methods can be divided into two large classes:
Á Direct methods (exactly serializable)

Á Iterative methods (not easily serializable)

È For iterative methods: what is the òwrongó answer?

È Most thread synchronizations will converge -- eventually

È Best solution: the one that is fastest to converge

È Synchronization may not be crucial or necessary for convergence

È However: unsynchronized code is incorrect code (and unpredictable)

È Therefore: threaded code should be synchronized

Need to study the effects of synchronization mechanisms

where

- ui is the approximation itself

- fi is the right hand side

- Aij represents the j-th component of row i in matrix A

- l can be either n or n+1, depending on óageô

Å Smoothers are a critical part of AMG

Å Reduce erors in the direction of eigenvectors

Å Simple point-wise smoothers like Jacobi or Gauss-Seidel (G-S)

reduce errors associcated with large eigenvectors rapidly

Å It can be symbolically represented by the equation:

Å This is parallelized by partitioning A row-wise

Å Hybrid Gauss-Seidel has Jacobi-like update on node or thread boundaries

- Nontrivial to parallelize because of the dependencies in ui:

- Race conditions exist, where probability of conflicts is low, but nonzero

- Transactional memory will synchronize differently than OpenMP critical

- We have a write-after-read (WAR) conflict where the average itself might

change during the averaging process

È The same TM-assisted method used for mesh
smoothing can also be used for Hybrid G-S

È Indeed, the formulae look similar:

for AMG: for mesh smoothing:

È Within the transaction we have a WAR (write -after-read)
type update

È The potential memory conflict comes from a variable being
updated after it had been read (for another variableõs
update by a different thread)

È TSX rollbacks will then òrefreshó the stale variables
È TSX will typically yield òfresheró, more up-to-date info
È With HLE : becomes OMP critical upon conflict
È With RTM : multiple retries are possible depending on

KMP_ADAPTIVE_LOCK_PROPS = M, N: adaptive -lock
È The only comparable alternative to TSX is omp critical
È TSX has an effect on how the solution converges
È Tradeoff: RTM is more expensive but more òaccurateó

TSX adds algorithmic aspects of its own.

È 3-D sphere mesh with hexahedral finite elements

È Two arbitrarily -placed material subdomains

È Material coefficients a(x,y,z) are 1 and 1000

Solving Scalar diffusion:

Goal: study convergence of AMG smoother

È Ran on 1, 2, 4, 8, 16, 32 and 64 threads
È Three modes of running with threads:
ÁHLE
ÁRTM
ÁOpenMP critical

È Modification of BoomerAMG branch of hypre
È Compared against HGS, l1 GS and l1 Jacobi
È HMIS coarsening with extended+i interpolation
È AMG -preconditioned GMRES as solver
È Run on Intel Xeon E5-2695v4 (Broadwell), 64GB mem.
È Turbo Boost, hyperthreading and TSX enabled
È Convergence measured in terms of residuals

Å On 1 thread: RTM, HLE, critical and HGS identical to serial (not

shown)

Å On 2 threads: substantial difference between HGS and all

other options; HGS approaches L1-Jacobi

Å On 4 threads: RTM, HLE, critical, serial are very close to each

other; HGS deteriorates considerably, L1-GS does so slightly

Å On all thread counts: no change in L1-Jacobi (thread invariant)

Å On 8 threads: RTM, HLE, and critical remain close to serial;

HGS stopped converging altogether

Å On 64 threads: RTM, HLE, and critical remain close to serial;

HGS does not converge; L1-GS deteriorates more

Å On all thread counts: no change in L1-Jacobi (thread invariant)

Adding synchronization to HGS resulted in convergence

HLE is the overall best performer for this problem

ÅNew way to measure performance

(introduced at IWOMP 2014):

where r is now residual (not actual

error or ñdistance to exact solutionò)

Å HLE, RTM and critical outperform

all others by orders of magnitude

(except on 1 thread)

Å Orders of magnitude difference in performance between the various smoothers

Å On 2 through 32 threads: HLE is better than unsync

Å On 2, 4 and 8 threads: RTM is competitive

Å On 4 through 32 threads: HLE is better than all others

Å For this problem HLE is overall ñbestò on 16 threads

