
 Barna L. Bihari1, James Cownie2, Hansang Bae2,
Ulrike M. Yang1 and Bronis R. de Supinski1

1Lawrence Livermore National Laboratory, Livermore, California

2Intel Corporation, Santa Clara, California

OpenMPCon Developers Conference
Nara, Japan, October 3-4, 2016

Technical:
 Trent D’Hooge (LLNL)
 Tzanio Kolev (LLNL)

Supervisory:
 Lori Diachin (LLNL)

Borrowed example and mesh figures:

 A.H. Baker, R.D. Falgout, Tz.V. Kolev, and U.M. Yang, Multigrid
Smoothers for Ultraparallel Computing, SIAM J. Sci. Comput., 33
(2011), pp. 2864-2887. LLNL-JRNL-473191.

Financial support:
 Dept. of Energy (DOE), Office of Science, ASCR
 DOE, under contract DE-AC52-07NA27344

http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Intel, Xeon, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

 Introduction and history
 Prior/standard approaches
 Review of TSX on Intel
 Review of AMG
 Review of TM for iterative methods, such as AMG
 Experimental results
 - Problem, mesh, code and experimental setup
 - Convergence studies
 - Performance
 Conclusions

 Motivation: Increased number of cores per node for the foreseeable
future – shared memory parallel programming or threading

 In 2011: IBM Blue Gene/Q: first production-quality HTM system
 In 2013: Intel Haswell: HTM system called TSX with two flavors
 Predecessor to HTM: STM (Software Transactional Memory) by

IBM, Intel and Sun
 Current work is related to our IWOMP 2010, 2012, 2014, and 2015

papers
 Direct Methods: Multiple threads in a shared-memory setting can

lead to race conditions, memory conflicts and incorrect execution
 Iterative Methods: Multiple threads do lead to race conditions, but

incorrect execution is hard to quantify; result: inefficiency instead
 Current work: Study and compare the effects of:

 (i) Restricted Transactional Memory (RTM – part of TSX),
 (ii) Hardware Lock Elision (HLE – part of TSX), and
 (iii) OpenMP critical

Can TSX benefit iterative methods ?

 Mutual exclusion: One thread at a time – OMP critical
 - very safe, but not very scalable
 - potential deadlocks
 - convoying of execution: poor performance
 OpenMP atomics: Non-blocking protection – OMP atomic
 - compare-and-swap (CAS)
 - load-linked store conditional (LL/SS)
 - limited to single instruction
 - several atomics are not equivalent to one large transaction
 Lock elision: Speculative technique - similar to TM (on

Haswell/Broadwell)
 - optimistic execution of a critical section
 - elides or bypasses acquiring the lock
 - uses cache coherency mechanism to track reads/writes
 - transaction size limited to cache size – not as general as TM
 - if there is no hardware support, defaults to acquiring the lock

 Only OMP critical is available/applicable as comparison

 TM solves the concurrency control problem

 TM is not new: goes back to Herlihy and Moss (1993)

 TM raises the level of abstraction

 It can coexist with current OpenMP concurrency
mechanisms

 TM is deadlock-free and expected to be scalable

 Ease of use is a key consideration

 Simple syntax, e.g. IBM’s current OpenMP extension:

#pragma tm_atomic [(safe_mode)]

{

 < code >

}

 Need high level support for TM

 Intel TSX = Transactional Synchronization Extensions
 cache coherency protocol detects memory access conflicts

 this is transactional memory (TM) with restricted working set

 this allows coarse-locked codes to behave as if implemented with fine-
grain reader-writer locks

 Hardware Lock Elision (HLE): extension for existing locks
 processor speculates critical section, but preserves all lock semantics

 in case of a conflict the lock is taken “for real”

 Restricted Transactional Memory (RTM): new transaction
instructions
 explicit begin and commit transaction operations, no visible lock

 there has to be a non-speculative back-off path in case of conflict

 Two types of TM with hardware support

 Fundamental requirement: do not break any existing code
 new functionality is introduced as hints

 Three options were considered
 pragmas to prefix existing lock routines with the desired hint

 complete set of new locking routines and lock types

 new lock initialization routines to use with the existing lock API

 minimal code modification, allows for incremental code adoption

 OpenMP lock review
 variable of type omp_lock_t or omp_nest_lock_t

 must be initialized before first use with omp_init[_nest]_lock()

 routines to initialize, set, unset, and test a lock and finally to destroy it

Software was needed for convenient usage of Intel’s TSX

 Two new lock init functions provide hints to the runtime system
 void kmp_init[_nest]_lock_hinted(omp[_nest]_lock_t*,
omp_lock_hint)

 The kmp_lock_hint type lists high-level optimization criterions:
 kmp_lock_hint_none

 kmp_lock_hint_uncontended optimize for an uncontended lock
 kmp_lock_hint_contended optimize for a contended lock
 kmp_lock_hint_nonspeculative do not use hardware speculation
 kmp_lock_hint_speculative use HLE hardware speculation
 kmp_lock_hint_adaptive adaptively use RTM speculation
 … plus room for vendor-specific extensions

 Fundamental requirement: do not break any existing code
 Open source OpenMP runtime – part of LLVM as well

Software was provided for convenient usage of Intel’s TSX

 Few/no benchmarks exist for experimentation with TM

 Numerical methods can be divided into two large classes:
 Direct methods (exactly serializable)

 Iterative methods (not easily serializable)

 For iterative methods: what is the “wrong” answer?

 Most thread synchronizations will converge -- eventually

 Best solution: the one that is fastest to converge

 Synchronization may not be crucial or necessary for convergence

 However: unsynchronized code is incorrect code (and unpredictable)

 Therefore: threaded code should be synchronized

Need to study the effects of synchronization mechanisms

where

- ui is the approximation itself

- fi is the right hand side

- Aij represents the j-th component of row i in matrix A

- l can be either n or n+1, depending on ‘age’

• Smoothers are a critical part of AMG

• Reduce erors in the direction of eigenvectors

• Simple point-wise smoothers like Jacobi or Gauss-Seidel (G-S)

reduce errors associcated with large eigenvectors rapidly

• It can be symbolically represented by the equation:

• This is parallelized by partitioning A row-wise

• Hybrid Gauss-Seidel has Jacobi-like update on node or thread boundaries

- Nontrivial to parallelize because of the dependencies in ui:

- Race conditions exist, where probability of conflicts is low, but nonzero

- Transactional memory will synchronize differently than OpenMP critical

- We have a write-after-read (WAR) conflict where the average itself might

change during the averaging process

 The same TM-assisted method used for mesh
smoothing can also be used for Hybrid G-S

 Indeed, the formulae look similar:

for AMG: for mesh smoothing:

 Within the transaction we have a WAR (write-after-read)
type update

 The potential memory conflict comes from a variable being
updated after it had been read (for another variable’s
update by a different thread)

 TSX rollbacks will then “refresh” the stale variables
 TSX will typically yield “fresher”, more up-to-date info
 With HLE: becomes OMP critical upon conflict
 With RTM: multiple retries are possible depending on

KMP_ADAPTIVE_LOCK_PROPS = M, N: adaptive-lock
 The only comparable alternative to TSX is omp critical
 TSX has an effect on how the solution converges
 Tradeoff: RTM is more expensive but more “accurate”

TSX adds algorithmic aspects of its own.

 3-D sphere mesh with hexahedral finite elements

 Two arbitrarily-placed material subdomains

 Material coefficients a(x,y,z) are 1 and 1000

Solving Scalar diffusion:

Goal: study convergence of AMG smoother

 Ran on 1, 2, 4, 8, 16, 32 and 64 threads
 Three modes of running with threads:

 HLE
 RTM
 OpenMP critical

 Modification of BoomerAMG branch of hypre
 Compared against HGS, l1 GS and l1 Jacobi
 HMIS coarsening with extended+i interpolation
 AMG-preconditioned GMRES as solver
 Run on Intel Xeon E5-2695v4 (Broadwell), 64GB mem.
 Turbo Boost, hyperthreading and TSX enabled
 Convergence measured in terms of residuals

• On 1 thread: RTM, HLE, critical and HGS identical to serial (not

shown)

• On 2 threads: substantial difference between HGS and all

other options; HGS approaches L1-Jacobi

• On 4 threads: RTM, HLE, critical, serial are very close to each

other; HGS deteriorates considerably, L1-GS does so slightly

• On all thread counts: no change in L1-Jacobi (thread invariant)

• On 8 threads: RTM, HLE, and critical remain close to serial;

HGS stopped converging altogether

• On 64 threads: RTM, HLE, and critical remain close to serial;

HGS does not converge; L1-GS deteriorates more

• On all thread counts: no change in L1-Jacobi (thread invariant)

Adding synchronization to HGS resulted in convergence

HLE is the overall best performer for this problem

•New way to measure performance

(introduced at IWOMP 2014):

where r is now residual (not actual

error or “distance to exact solution”)

• HLE, RTM and critical outperform

all others by orders of magnitude

(except on 1 thread)

• Orders of magnitude difference in performance between the various smoothers

• On 2 through 32 threads: HLE is better than unsync

• On 2, 4 and 8 threads: RTM is competitive

• On 4 through 32 threads: HLE is better than all others

• For this problem HLE is overall “best” on 16 threads

 Stay tuned for a closely related presentation at IWOMP this
Friday, at 3:50pm:

 “Transactional Memory for Algebraid Multigrid
Smoothers”

by Barna Bihari, Ulrike Yang, Michael Wong, and Bronis R. de
Supinski

 For select algorithms, transactional memory promises thread-
safety, easier programming, and performance simultaneously

 Intel Xeon (formerly “Broadwell”) has TSX with two options

 TM/TSX pay-off is expected to be highly code- and problem-
dependent - as shown by our previous work

 New study of Algebraic Multigrid smoothers used in hypre

 First time TSX was applied to an industrial-grade package

 Synchronization made a non-convergent scheme converge

 AMG smoothers appear to be a good use case for TSX

 HLE outperforms other options in “time-to-quality”

 Hope to apply TSX to other GS-flavored methods, like CG

 Potential new lock type: “pure RTM””

 Always looking for collaborators and new candidates for TM

