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 Motivation:  Increased number of cores per node for the foreseeable 
future – shared memory parallel programming or threading 

 In 2011:  IBM Blue Gene/Q: first production-quality HTM system 
 In 2013:  Intel Haswell:  HTM system called TSX with two flavors 
 Predecessor to HTM:  STM (Software Transactional Memory) by 

IBM, Intel and Sun 
 Current work is related to our IWOMP 2010, 2012, 2014, and 2015 

papers 
 Direct Methods: Multiple threads in a shared-memory setting can 

lead to race conditions, memory conflicts and incorrect execution 
 Iterative Methods: Multiple threads do lead to race conditions, but  

incorrect execution is hard to quantify;  result: inefficiency instead 
 Current work:  Study and compare the effects of:   

 (i) Restricted Transactional Memory (RTM – part of TSX),  
 (ii) Hardware Lock Elision (HLE – part of TSX), and 
 (iii) OpenMP critical 

Can TSX benefit iterative methods ? 



 Mutual exclusion:  One thread at a time – OMP critical   
 - very safe, but not very scalable 
 - potential deadlocks  
 - convoying of execution:  poor performance 
 OpenMP atomics:  Non-blocking protection – OMP atomic  
 - compare-and-swap (CAS)   
      - load-linked store conditional (LL/SS) 
 - limited to single instruction 
 - several atomics are not equivalent to one large transaction 
 Lock elision: Speculative technique - similar to TM (on 

Haswell/Broadwell) 
 - optimistic execution of a critical section  
 - elides or bypasses acquiring the lock  
 - uses cache coherency mechanism to track reads/writes  
 - transaction size limited to cache size – not as general as TM  
 - if there is no hardware support, defaults to acquiring the lock 
 

 Only OMP critical is available/applicable as comparison 



 TM solves the concurrency control problem 

 TM is not new:  goes back to Herlihy and Moss (1993) 

 TM raises the level of abstraction 

 It can coexist with current OpenMP concurrency 
mechanisms 

 TM is deadlock-free and expected to be scalable 

 Ease of use is a key consideration 

 Simple syntax, e.g. IBM’s current OpenMP extension: 

 
 

#pragma tm_atomic [(safe_mode)] 

{ 

   < code > 

} 

 Need high level support for TM 



 Intel TSX = Transactional Synchronization Extensions 
 cache coherency protocol detects memory access conflicts 

 this is transactional memory (TM) with restricted working set 

 this allows coarse-locked codes to behave as if implemented with fine-
grain reader-writer locks 

 

 Hardware Lock Elision (HLE): extension for existing locks 
 processor speculates critical section, but preserves all lock semantics 

 in case of a conflict the lock is taken “for real” 

 

 Restricted Transactional Memory (RTM): new transaction 
instructions 
 explicit begin and commit transaction operations, no visible lock 

 there has to be a non-speculative back-off path in case of conflict 

 

 
  Two types of TM with hardware support 



 Fundamental requirement: do not break any existing code 
 new functionality is introduced as hints 

 

 Three options were considered 
 pragmas to prefix existing lock routines with the desired hint 

 complete set of new locking routines and lock types 

 new lock initialization routines to use with the existing lock API 

 minimal code modification, allows for incremental code adoption 
 

 OpenMP lock review 
 variable of type omp_lock_t or omp_nest_lock_t 

 must be initialized before first use with omp_init[_nest]_lock() 

 routines to initialize, set, unset, and test a lock and finally to destroy it 

Software was needed for convenient usage of Intel’s TSX 



 Two new lock init functions provide hints to the runtime system 
 void kmp_init[_nest]_lock_hinted( omp[_nest]_lock_t*, 
omp_lock_hint ) 

 The kmp_lock_hint type lists high-level optimization criterions: 
 kmp_lock_hint_none 

 kmp_lock_hint_uncontended   optimize for an uncontended lock 
 kmp_lock_hint_contended   optimize for a contended lock 
 kmp_lock_hint_nonspeculative    do not use hardware speculation 
 kmp_lock_hint_speculative   use HLE hardware speculation 
 kmp_lock_hint_adaptive   adaptively use RTM speculation 
 … plus room for vendor-specific extensions 

 Fundamental requirement: do not break any existing code 
 Open source OpenMP runtime – part of LLVM as well 

Software was provided for convenient usage of Intel’s TSX 



 Few/no benchmarks  exist for experimentation  with TM 

 Numerical methods can be divided into two large classes: 
 Direct methods (exactly serializable) 

 Iterative methods (not easily serializable) 

 For iterative methods:  what is the “wrong” answer?  

 Most thread synchronizations will converge -- eventually 

 Best solution:  the one that is fastest to converge 

 Synchronization may not be crucial or necessary for convergence 

 However: unsynchronized code is incorrect code (and unpredictable) 

 Therefore:  threaded code should be synchronized 

Need to study the effects of synchronization mechanisms 





where 

- ui is the approximation itself 

- fi is the right hand side 

- Aij represents the j-th component of row i in matrix A 

- l can be either n or n+1, depending on ‘age’ 

• Smoothers are a critical part of AMG 

• Reduce erors  in the direction of eigenvectors 

• Simple point-wise smoothers like Jacobi or Gauss-Seidel (G-S) 

reduce errors associcated with large eigenvectors rapidly 

• It can be symbolically represented by the equation: 

•  This is parallelized by partitioning A row-wise 

•  Hybrid Gauss-Seidel has Jacobi-like update on node or thread boundaries 



- Nontrivial to parallelize because of the dependencies in ui: 

- Race conditions exist, where probability of conflicts is low, but nonzero 

- Transactional memory will synchronize differently than OpenMP critical 

- We have a write-after-read (WAR) conflict where the average itself might 

change during the averaging process 

 The same TM-assisted method used for mesh 
smoothing can also be used for Hybrid G-S 

 Indeed, the formulae look similar:  

for AMG:                                                                     for mesh smoothing: 





 Within the transaction we have a WAR (write-after-read) 
type update 

 The potential memory conflict comes from a variable being 
updated after it had been read (for another variable’s 
update by a different thread) 

 TSX rollbacks will then “refresh” the stale variables 
 TSX will typically yield “fresher”, more up-to-date info 
 With HLE:  becomes OMP critical upon conflict 
 With RTM: multiple retries are possible depending on 

KMP_ADAPTIVE_LOCK_PROPS = M, N: adaptive-lock 
 The only comparable alternative to TSX is omp critical 
 TSX has an effect on how the solution converges 
 Tradeoff:  RTM is more expensive but more “accurate” 

TSX adds algorithmic aspects of its own. 



 3-D sphere mesh with hexahedral finite elements 

 Two arbitrarily-placed material subdomains 

 Material coefficients a(x,y,z) are 1 and 1000 

 

Solving Scalar diffusion: 



Goal:  study convergence of AMG smoother 

 Ran on 1, 2, 4, 8, 16, 32 and 64 threads 
 Three modes of running with threads: 

 HLE 
 RTM 
 OpenMP critical  

 Modification of BoomerAMG branch of hypre 
 Compared against HGS, l1 GS and l1 Jacobi 
 HMIS coarsening with extended+i interpolation 
 AMG-preconditioned GMRES as solver 
 Run on Intel Xeon E5-2695v4 (Broadwell), 64GB mem. 
 Turbo Boost, hyperthreading and TSX enabled 
 Convergence measured in terms of residuals 

 



• On 1 thread: RTM, HLE, critical and HGS identical to serial (not 

shown) 

• On 2 threads: substantial difference between HGS and all 

other options; HGS approaches L1-Jacobi 

• On 4 threads:  RTM, HLE, critical, serial are very close to each 

other; HGS deteriorates considerably, L1-GS does so slightly 

• On all thread counts: no change in L1-Jacobi (thread invariant) 

 



• On 8 threads: RTM, HLE, and critical remain close to serial; 

HGS stopped converging altogether 

• On 64 threads: RTM, HLE, and critical remain close to serial; 

HGS does not converge; L1-GS deteriorates more 

• On all thread counts: no change in L1-Jacobi (thread invariant) 

 

Adding synchronization to HGS resulted in convergence  



HLE is the overall best performer for this problem 

•New way to measure performance 

(introduced at IWOMP 2014):  

 

 

 

 

 

where r is now residual (not actual 

error or “distance to exact solution”) 

 

• HLE, RTM and critical outperform 

all others by orders of magnitude 

(except on 1 thread) 

 
• Orders of magnitude difference in performance between the various smoothers 

• On 2 through 32 threads:  HLE is better than unsync 

• On 2, 4 and 8 threads:  RTM is competitive 

• On 4 through 32 threads:  HLE is better than all others  

• For this problem HLE is overall “best” on 16 threads  



 Stay tuned for a closely related presentation at IWOMP this 
Friday, at 3:50pm: 

 

 

 “Transactional Memory for Algebraid Multigrid 
Smoothers”  

 

by Barna Bihari, Ulrike Yang, Michael Wong, and Bronis R. de 
Supinski 



 For select algorithms, transactional memory promises thread-
safety, easier programming, and performance simultaneously 

 Intel Xeon (formerly “Broadwell”) has TSX with two options 

 TM/TSX pay-off is expected to be highly code- and problem-
dependent  - as shown by our previous work 

 New study of Algebraic Multigrid smoothers used in hypre 

 First time TSX was applied to an industrial-grade package 

 Synchronization made a non-convergent scheme converge 

 AMG smoothers appear to be a good use case for TSX 

 HLE outperforms other options in “time-to-quality” 

 Hope to apply TSX to other GS-flavored methods, like CG 

 Potential new lock type:  “pure RTM””  

 Always looking for collaborators and new candidates for TM 


