JSER-GUIDED SPECULATIVE
JOCKS FOR ALGEBRAIC
'GRID SMOOTHERS

. Bihari', James

ownie’, Hansang Bae?,
ke M. Yang!

Bronis R. de Supinski’

OpenMPCon Developers Conference intel=
Nara, Japan, October 3-4, 2016

Acknowledgements (LLNL)

_ , SIAM |. Sci. Comput., 33
. 2864-2887. LLNL-JRNL-473191.

rgjy (DOE), Office of Science, ASCR
'DOE, under contract DE-AC52-07NA27344

http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf
http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/smoothers-2011.pdf

i Disclaimer, Optimization
Notice

IS PROVIDED “ASIS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
H(AL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

[ING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

LAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

TUAL PROPERTY RIGHT.

nd workloads used in performance tests may have been optimized for performance only on Intel

ors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
ponents, software, operations and functions. Any change to any of those factors may cause the results to
should consult other information and performance tests to assist you in fully evaluating your contemplated
including the performance of that product when combined with other products.

and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

(inte ;

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Conclusions

e

troduction and History

reased number of cores per node for the foreseeable
emory parallel programming or threading

ne/Q: first production-quality HTM system
BT M system called TSX with two flavors
(Software Transactional Memory) by

ntel and Sun
t work is related to our IWOMP 2010, 2012, 2014, and 2015

Methods: Multiple threads in a shared-memory setting can
, memory conflicts and

Methods: Multiple threads do lead to , but
. is hard to quantify; result: instead

@ Current work: Study and compare the effects of:
= (i) Restricted Transactional Memory (RTM - part of TSX),
= (ii) Hardware Lock Elision (HLE - part of TSX), and
= (iii) OpenMP critical

Can TSX benefit iterative methods ?

e
ible Alternatives to TM

ion: One thread at a time -

: poor performance
cking protection -

are-and-swap (CA
inked store conditional (LL/SS)

to single instruction

atomics are not equivalent to one large transaction
ision: Speculative technique - (on

Broadwell)
\ - optimistic execution of a critical section
- elides or bypasses acquiring the lock

- uses cache coherency mechanism to track reads/writes
- transaction size limited to cache size - not as general as TM
- if there is no hardware support, defaults to acquiring the lock

Only OMP critical is available/applicable as comparison

M as part of OpenMP?

the concurrency control problem
ew: goes back to Herlihy and Moss (1993)
TM raises the level of abstraction

can coexist with current OpenMP concurrency
chanisms

1s deadlock-free and expected to be scalable
e of use is a key consideration
= Simple syntax, e.g. IBM’s current OpenMP extension:

#pragmatm_atomic [(safe_mode)]

{

< code >

}

Need high level support for TM

e
ntel 1SX Overview

nsactional Synchronization Extensions
otocol detects memory access conflicts
emory (TM) with restricted working set

codes to behave as if implemented with fine-
in reader-writer locks

re Lock Elision (HLE): extension for existing locks
essor speculates critical section, but preserves all lock semantics
e of a conflict the lock is taken “for real”

B Restricted Transactional Memory (RTM): new transaction
instructions
= explicit begin and commit transaction operations, no visible lock
= there has to be a non-speculative back-off path in case of conflict

Two types of TM with hardware support

LLg | intel)

Jeer-Guided Speculative Locks

quirement: do not break any existing code
introduced as hints

= variable of type omp lock toromp nest lock t
= must be initialized before first use with omp init[nest] lock()
= routines to initialize, set, unset, and test a lock and finally to destroy it

Software was needed for convenient usage of Intel’s TSX

e

‘Guided Speculative Locks
(Cont'd)

tions provide hints to the runtime system
_lock hinted(omp[nest] lock t¥*,

idkmp init[ne
lock hint")
p lock hint type lists high-level optimization criterions:
lock hint none
ock hint uncontended optimize for an uncontended lock
lock h:Lnt contended optimize for a contended lock
ock hint nonspeculative do not use hardware speculation
h = kmp ck hint speculative use HLE hardware speculation

= kmp _ 1ock hint adaptive adaptively use RTM speculation

= ... plus room for vendor-specific extensions

= Fundamental requirement: do not break any existing code
= Open source OpenMP runtime - part of LLVM as well

Software was provided for convenient usage of Intel’s TSX

WVisror Scientific Computing

exist for experimentation with TM

1 be divided into two large classes:
rializable)
tive methods (not easily serializable)

rect methods (exactly se

read synchronizations will converge -- eventually
tion: the one that is fastest to converge

code is code (and unpredictable)
=@ Therefore: threaded code should be synchronized

Need to study the effects of synchronization mechanisms

& Brief Review of AMG

Setup Phase

i * Select coarse “grids”

* Define interpolation, P™M m=1,2,...

* Define restriction, RI™ = (P(mh)T

* Define coarse-grid operators, Aim*1) = R(M) A{m} p(m)

Solve Phase (level m)

Smooth AM ym = fm Smooth AmM ym = fm

\ /
Compute rm = fm. A(mM) ym Correct U™ «— um+ em

Restrict rm*! = R(M) ¢m Interpolate em = P(m) gm*

O Solve AM1) @M+ = PN+

(G-S)

here
U, is the approximation itself
- fis the right hand side

Ajj represents the J-th component of row i in matrix A
- | can be either n or n+1, depending on ‘age’

« This is parallelized by partitioning A row-wise
. has Jacobi-like update on node or thread boundaries

smoothing can also be used for Hybrid G-S
Indeed, the formulae look similar:

for mesh smoothing:

- Nontrivial to parallelize because of the dependencies in u;:

- Race conditions exist, where probability of conflicts is

- Transactional memory will synchronize differently than OpenMP critical

- We have a write-after-read (WAR) conflictwhere the average itself might
change during the averaging process

L

Jhe Relevant Code Section

omp_lock t lock:
kmp _init lock _hinted(&lock , kmp lock _hint_speculative)

#pragma omp parallel for private(i.ii.jj.res) HYPRE SMP SCHEDULE
for (i D 1 < n: i++4)
1 S ostart of for—loop threaded over rows
il (el marker]|i| relax points &
A diag data| A diag i|i|] ! zero)
S0 ostart ol il —statement
[datali]:
for (jj A offd i j7 < A offd i1 L i
{
il A wolffd i)
res — A offd data]ji] = Vext data|ii|:
1
omp_set lock(&lock):
1 S0 ostart ol eritical region
Step 1 Take weighted—average .
for (] A diag i|i1e 3 o A diag i i1 i
{ S/ ostart of averaging for—loop
ii A diag jlii]:
res — A diag data|ji| * u datalii|:
} S0 end ol averaging for—loop
Step 20 Update current .
u datalil res A diag data| A diag Qi
} S0 end of ceritical region
omp_unset lock(&lock):
} S0 end of il —statement
} S0 end of for—loop threaded over rows

T

The Role of TSX

nsaction we have a WAR (write-after-read)

ry conflict comes from a variable being
en read (for another variable’s

ollbacks will then “refresh” the stale variables
ill typically yield “fresher”, more up-to-date info
LE: becomes upon conflict

TM: are possible depending on
DAPTIVE LOCK_PROPS =M, N: adaptive-lock

@ The only comparable alternative to TSX is
=@ TSX has an effect on how the solution converges
@ Tradeoff: RTM is more expensive but more “accurate”

TSX adds algorithmic aspects of its own.

EXperimental Results

e

: ; intel)
erimental Results (Cont.'d)

. 8,16,32 and 64 threads
running with threads:

ification of BoomerAMG branch of hypre

pared against HGS, [; GS and [; Jacobi

= S coarsening with extended+iinterpolation

= -preconditioned GMRES as solver

= Run on Intel Xeon E5-2695v4 (Broadwell), 64GB mem.
=@ Turbo Boost, hyperthreading and TSX enabled

= Convergence measured in terms of residuals

Goal: study convergence of AMG smoother

The Convergence (inteD

Convergence, 3-D Sphere, 2 threads

Convergence, 3-D Sphere, 4 threads

L

Residuals

N
.......

RTM

RTM
HLE

O Critical

O HGs

Residuals

HLE
O Critical
O HGs

L1-GS
A L1-Jacobi

10 20
Iteration number

L1-GS
A L1-Jacobi

10 20
Ilteration number

- On 1 thread: RTM, HLE, critical and HGS identical to serial (not
shown)

* On 2 threads: substantial difference between HGS and all
other options; HGS approaches L1-Jacobi

* On 4 threads: RTM, HLE, critical, serial are very close to each
other; HGS deteriorates considerably, L1-GS does so slightly
 On all thread counts: no change in L1-Jacobi (thread invariant)

Tthe Convergence (inteD

..........................

RTM
HLE

O Critical

O HGS

m— Serial
L1-GS

A L1-Jacobi

10 20 30
Iteration number

+ RTM

+ HLE
¢ critical
O HGS

— Serial

L1-GS

L1-Jacobi

20 3
Ilteration number

- On 8 threads: RTM, HLE, and critical remain close to serial;

* On 64 threads: RTM, HLE, and critical remain close to serial;
HGS does not converge; L1-GS deteriorates more
* On all thread counts: no change in L1-Jacobi (thread invariant)

Adding synchronization to HGS resulted in convergence

Vieasuring Perfomance

New way to measure performance

(introduced at IWOMP 2014):
__~ o (n)
\n) _ t

f —e—RTM
e HLE
=== Critical
—0— HGS

L1-GS
L1-Jacobi

where r is now residual (not actual
error or “distance to exact solution™)

* HLE, RTM and critical outperform
all others by orders of magnitude
(excepton 1 thread)

16 32 64
Number of threads

» Orders of magnitude difference in performance between the various smoothers
* On 2 through 32 threads: HLE is better than unsync

* On 2, 4 and 8 threads: RTM is competitive

* On 4 through 32 threads: HLE is better than all others

* For this problem HLE is overall “best” on 16 threads

HLE is the overall best performer for this problem

osely related presentation at IWOMP this

onal Memoy or Algebraid Multigrid

i, Ulrike Yang, Michael Wong, and Bronis R. de

summary and Future Work

s, transactional memory promises thread-
amming, and performance simultaneously

Broadwell”) has TSX with two options

Day-o ed to be highly code- and problem-
lent - as shown by our previous work

1y of Algebraic Multigrid smoothers used in hypre
TSX was applied to an industrial-grade package

ization made a non-convergent scheme converge
AMG smoothers appear to be a good use case for TSX

m HLE outperforms other options in “time-to-quality”

= Hope to apply ISX to other GS-flavored methods, like CG

= Potential new lock type: “pure RTM”

o

