
James C Beyer PhD, Sept 29th 2015

Comparing OpenACC 2.5 and OpenMP 4.1



2

Abstract

As both an OpenMP and OpenACC insider I will present my opinion of the current 
status of these two directive sets for programming “accelerators”. Insights into why 
some decisions were made in initial releases and why they were changed later will 
be used to explain the trade-offs required to achieve agreement on these complex 
directive sets.



3

Why a talk about OpenMP vs OpenACC?

These are the two dominate directive based methods for programming 
“accelerators”

They are relatives!

Why not, it seems like a nice non-controversial topic



4

Agenda

OpenMP status

OpenACC status

Major differences

Loops



5

Status – OpenMP 4.1

New or changed functionality

use-device-ptr
is-device-ptr
nowait
depend
(first)private
defaultmap
declare target link
enter|exit target data
scalar implicit data-sharing 

firstprivate
deeper-shallow copy
device memory routines

Existing OpenACC 2.0 functionality

host_data
deviceptr
async
async()/wait()
(first)private

declare link
enter|exit data
scalar implicit data-sharing 

device memory routines



6

Status – OpenACC 2.5

New or changed functionality

declare create on allocatable
init, shutdown, set directives
if_present on update
routine bind
openacc_lib.h deprecated
API to get/set default async queue
switch default present_or behavior
default(present)
async version of memory APIs
acc_memcpy_device
profiling support

OpenMP 4.1 functionality

Update no-op if not present

omp_target_memcpy[_rect]
TR



7

Major differences

What is the fundamental difference between OpenMP and OpenACC?

1) Prescriptive vs Descriptive (or is it?)

2) Synchronization 

3) Independent loop iterations
This is an interesting and important topic

4) Expressiveness vs Performance and Portability
Is this real or just perceived?



8

“Scope: The OpenMP API covers only user-directed parallelization, 

wherein the programmer explicitly specifies the actions to be taken 

by the compiler and runtime system in order to execute the program in 

parallel. OpenMP-compliant implementations are not required to check 

for data dependencies, data conflicts, race conditions, or deadlocks, 

any of which may occur in conforming programs. In addition, compliant 

implementations are not required to check for code sequences that 

cause a program to be classified as non- conforming. Application 

developers are responsible for correctly using the OpenMP API to 

produce a conforming program. The OpenMP API does not cover 

compiler-generated automatic parallelization and directives to the 

compiler to assist such parallelization.”

— OpenMP 4.1 Comment Draft, Page 1 



9

“Scope: This OpenACC API document covers only user-directed 

accelerator programming, where the user specifies the regions of a 

host program to be targeted for offloading to an accelerator device. 

The remainder of the program will be executed on the host. This 

document does not describe features or limitations of the host 

programming environment as a whole; it is limited to specification of 

loops and regions of code to be offloaded to an accelerator.”

— OpenACC 2.5 Comment Draft, page 7 

“Introduction: The programming model allows the programmer to 

augment information available to the compilers, including 

specification of data local to an accelerator, guidance on

mapping of loops onto an accelerator, and similar performance-related 

details.”



10

So what's different between those two statements?

wherein the programmer explicitly specifies the 

actions to be taken by the compiler -- OpenMP

guidance on mapping of loops

user specifies the regions of a host program to be 

targeted for offloading -- OpenACC

So is this difference significant?

Clearly we thought is was when we formed the OpenACC
technical committee 

IMPLICIT
and 

EXPLICIT

EXPLICIT



11

Major differences



12

Synchronization

OpenMP
master
critical
barrier
taskwait
taskgroup
atomic – restrictions?
flush
ordered
depend

OpenACC

atomic – with restrictions

async/wait – if you squint



13

Present or not

OpenACC 1.0 had two forms of data motion clauses, one form for testing presence 
and one for “skipping” the presence test.

OpenMP 4.0 had one form of data motion clause which always checks for presence

OpenACC 2.5 eliminates the form that skips the presence test
– actually, it makes the “fast” path do a present test

OpenMP learns from OpenACC and vice verse



14

Update directives

OpenACC 1.0 and OpenMP 4.0 both made it an “error” to do an “update” on an 
object that was not present on the device

OpenACC 2.0 and OpenMP 4.1 both relaxed this hindrance to programmers

OpenACC 2.0 added the if_present clause

OpenMP 4.1 just makes the update a no-op if the object is not present

Present or not (take 2)



15

Routines and/or calls

OpenACC 1.0 did not support calls, either they had to flatten out or they could not 
be present, with a few minor exceptions provided by implementations.

OpenMP 4.0 provided “target declare” which places objects and routines on the 
device

The OpenMP compiler does not look for automatic parallelism thus it does routines 
do not need to reserve parallelism for themselves

OpenACC 2.0 provided “routine” which caused the compiler to generate one type of 
subroutine for the device, either gang, worker, vector or sequential



16

Default firstprivate scalars

OpenACC 1.0 made all scalars firstprivate unless overridden by the programmer

OpenMP 4.0 made all scalars map(inout) on target constructs

What happens if the object is already on the device?

Either the system goes to the device to determine important kernel sizing details or it           
has to make safe assumptions

User: why is my code slow? Implementer: because the kernel is mis-sized.
User: How do I fix it? Implementer: you have to rewrite your code to …
User: That’s ridiculous! Implementer: Agreed

OpenMP 4.1 makes all scalars firstprivate by default



17

Biggest mistake made in both directive sets

OpenACC 1.0 and OpenMP 4.0 both contained structured data constructs

C++ has constructor and destructors (surprise!)

Structured data constructs do not mix well in this environment

C and Fortran developers create their own initializers, (constructors) and finalizers, 
(destructors)

Both OpenACC and OpenMP learned from this mistake



18

Host or device compilation

Host
omp parallel for/do

Device
omp target parallel do
or
omp target teams distribute parallel for
or
omp target teams distribute parallel for simd
or
omp target teams distribute simd
or
omp target parallel for simd
or
omp target simd

Host
acc parallel loop

Device
acc parallel loop*

OpenMP 4.1 OpenACC 2.5



19

OpenACC loops vs OpenMP loops



20

Independent loop example(s)

foo( int *a, int n ) {

for ( int i = 0; i<n; i++) {

a[i] = i;

}

}

foo2( int * a, int * b, int n ) {

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}

In C



21

Independent loop example(s)

foo( int *a, int n ) {

for ( int i = 0; i<n; i++) {

a[i] = i;

}

}

foo2( int * restrict a, 
int * restrict b, 
int n ) {

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}

In C



22

Independent loop example(s)

subroutine foo( a, n )
integer :: a(n)
integer n,i

do i = 1, n

a(i) = i;

enddo

end subroutine foo

subroutine foo2( a, b, n )
integer :: a(n), b(n)
integer n,i

do i = 1, n

a(i) = a(i) * b(i);

enddo

end subroutine foo2

In Fortran



23

Parallelizing Independent loops

foo2( int * a, int * b, int n ) {

#pragma acc parallel loop

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}

Using OpenMP and OpenACC

foo2( int * a, int * b, int n ) {

#pragma omp parallel for

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}



24

Parallelizing Independent loops

foo2( int * restrict a, 
int * restrict b, 
int n ) {

#pragma acc kernels

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}

OpenMP and OpenACC (the other way)

foo2( int * a, int * b, int n ) {

#pragma omp parallel for

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}



25

Parallelizing Independent loops
Nearest equivalents to OpenACC versions

foo2( int * a, int * b, int n ) {

#pragma omp target teams distribute [parallel for simd]

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}



26

Parallelizing Independent loops
Nearest equivalents to OpenACC versions

foo2( int * a, int * b, int n ) {

#pragma omp target teams distribute [simd]

for( int i = 0; i<n; i++ ) {

a[i] = a[i] * b[i];

}

}



27

Parallelizing dependent loop example

foo2( int * a, int * b, int n ) {

#pragma omp parallel for ordered

for( int i = 0; i<n; i++ ) {

#pragma omp ordered

a[i] = a[i-1] * b[i];

}

}

OpenMP and OpenACC

foo2( int * a, int * b, int n ) {

#pragma acc kernels

for( int i = 0; i<n; i++ ) {

a[i] = a[i-1] * b[i];

}

}



28

1-D Stencil loop examined

!$acc parallel loop
do k = 2, n3-1
!$acc loop worker

do j = 2, n2-1
do i = 2, n1-1

!$acc cache( u(i-1:i+1, j, k) )
r(i,j,k) = <full stencil on u>

enddo
enddo

enddo

!$omp target teams distribute
do k = 2, n3-1
!$omp parallel for [simd?]

do j = 2, n2-1
do i = 2, n1-1
r(i,j,k) = <full stencil on u>

enddo
enddo

enddo

What is the “best” solution



29

1-D Stencil loop examined

!$omp target teams distribute parallel for [simd] collapse(3)
do k = 2, n3-1

do j = 2, n2-1
do i = 2, n1-1
r(i,j,k) = <full stencil on u>

enddo
enddo

enddo



30

Sparse matrix vector multiply

for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
for(int j=row_start; j<row_end;j++) {

unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}



31

Sparse matrix vector multiply

#pragma omp parallel for
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenMP: 1



32

Sparse matrix vector multiply

#pragma omp parallel for [simd]
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

[#pragma omp simd]
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenMP: 2 (when autovectorization fails)

Which is better?

Answer depends on 
hardware and inputs



33

Sparse matrix vector multiply

#pragma omp target teams distribute 
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenMP: 3 (on an “accelertor”)



34

Sparse matrix vector multiply

#pragma omp target teams distribute [parallel for|simd]
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

[#pragma omp [parallel for][simd]]
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenMP: 3.1 (what about the threads?)



35

Sparse matrix vector multiply

#pragma omp target teams distribute [parallel for|simd] if( num_rows<min_rows )
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

[#pragma omp [parallel for][simd]]
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenMP: 3.2 (what about running on the host?)

Do we really want a new team?

Do we really get a new team?

What if we want nested parallelism at 
different levels for different targets?

Things just start looking strange.

The language committee is working on 
fixing some of these “issues”.



36

Sparse matrix vector multiply

#pragma acc parallel loop
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

#pragma acc loop reduction(+:sum) // this is usually discovered by the compiler
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenACC: 1



37

Sparse matrix vector multiply

#pragma acc parallel loop [gang vector]
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

[#pragma acc loop vector]
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenACC: 2 (when autovectorization fails)

Which is better?

Answer depends on 
hardware and inputs



38

Sparse matrix vector multiply

#pragma acc parallel loop gang device_type( CrayV ) vector
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

#pragma acc loop device_type(*) vector \
device_type( CrayV ) seq

for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenACC: 2.1 (when autovectorization fails)



39

Sparse matrix vector multiply

#pragma acc parallel loop gang if(num_rows< min_rows) 
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

#pragma acc loop device_type(*) vector 
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}

OpenACC: 2.2 (what about the host?)

What does this do?

Just says run the 
construct on the host

What does this do?

Not well defined, spec says 
nothing about whether or 
not this affects the host



40

“First as a member of the Cray 
technical staff and now as a member 
of the NVIDIA technical staff, I am 
working to ensure that OpenMP and 
OpenACC move towards parity 
whenever possible!”

James Beyer, Co-chair OpenMP accelerator sub-committee and OpenACC
technical committee





42

• Common questions people ask about this topic

• Why did OpenACC split off from OpenMP?

• The final decision came down to time to release

• When will the two specs merge?

• 4.1 shows significant effort went into merging the specs

• Which is better?

• I cannot answer this question for you, it depends on what you are trying to do, 

• I will say that OpenMP has more compilers that support it at this time

• When or will <insert company name here> support OpenACC X or OpenMP 4.1?

• I have no idea, …  



43

SIMD versus Vector

Why does OpenMP say SIMD while OpenACC says Vector?

1) SIMD has been coopted to mean one type of implementation

2) Vector is a synonym for SIMD without the without implying an implementation

Can vector loops contain dependencies within the vector length?

Only if the hardware supports forwarding results to “future” elements

SIMT machines can do this, relatively easily

!$omp simd on a dependent loop may give “interesting” results

!$acc vector on a dependent loop should give the “correct” result



44

Independent loop iterations

Independent loop iterations can be run in any order

Dependent loops require some form a synchronization and potentially order 
guarantees

Question:

Can all algorithms be written to use independent loop iterations?  

Can NVIDIA gpus handle dependent loop iterations?  To a limited extent yes

Can Intel Xeon PHI processors handle dependent loop iterations? Yes

Can processor X handle dependent loop iterations?  


