
Yun (Helen) He, Alice Koniges,

Richard Gerber, Katie Antypas

OpenMPCon, Sept 28-30, 2015

Using OpenMP

at NERSC

Outline

• NERSC and our new system

– Why MPI + OpenMP is preferred

• OpenMP usage at NERSC

• What do we tell users about OpenMP scaling

– Process and thread affinity

– Scaling tips

– Tools for OpenMP

• Case studies of using and tuning MPI/OpenMP
performance

- 2 -

NERSC and our new

system

- 3 -

What is NERSC/LBNL
• National Energy Research Scientific Computing Center

(NERSC) is the primary computing facility for DOE
Office of Science for its mission.

– 6,900 users, >850 projects, >600 codes.

• Strong focus on Science
– A word-class resource to support world-class science.
– 1,808 refereed journal publications, 22 journal covers (2014)
– 4 NERSC users have won Nobel Prizes

• NERSC collaborates with vendors to deploy advanced
HPC and data resources

– Collaborate years before a system’s delivery to influence
hardware and software design

– Hopper (N6) and Cielo (ACES) were the first Cray petascale
systems with a Gemini

– Edison (N7) is the first Cray petascale system with Intel
processors, Aries interconnect and Dragonfly topology (serial
#1)

– Cori (N8) will be one of the first large Intel KNL systems and
will have unique data capabilities

• NERSC is a Division at the Lawrence Berkeley National
Laboratory (LBNL) and one of three divisions in
compute science areas.

- 4 -

2014 Allocation Breakdown

The Big Picture: KNL is Coming to

NERSC

• The next large NERSC production system “Cori” will be Intel Xeon
Phi KNL (Knights Landing) architecture
– Energy efficient manycore system
– > 9300 single socket nodes, multiple NUMA domains
– Self-hosted, not an accelerator
– 72 cores/node, 4 hardware threads per core. Total of 288 threads per

node
– AVX512, larger vector length of 512 bits (8 double-precision elements)
– On package high-bandwidth memory (HBM)
– Burst Buffer

- 5 -

Edison / Cori Quick Comparison

Edison (Ivy-Bridge)
NERSC Cray XC30 system

• 12 Cores Per CPU
• 24 Logical Cores Per CPU
• 2.4-3.2 GHz
• Vector length of 256 bits, 4

Double Precision Ops per
Cycle (+ multiply/add)

• 2.5 GB of Memory Per Core
• ~100 GB/s Memory

Bandwidth

Cori (Knights-Landing)

• 72 Physical Cores Per CPU
• 288 Logical Cores Per CPU
• Much slower GHz
• Vector length of 512 bits,

8 Double Precision Ops per Cycle
(+ multiply/add)

• < 0.3 GB of Fast Memory Per Core
• < 2 GB of Slow Memory Per Core
• Fast memory has ~ 5x DDR4

bandwidth
• Burst Buffer for fast IO

Programming Considerations: Running

on Cori

• Application is very likely to run on KNL with simple porting,
but high performance is harder to achieve.

• Applications need to explore more on-node parallelism
with thread scaling and vectorization, also to utilize HBM
and burst buffer options.

• Many applications will not fit into the memory of a KNL
node using pure MPI across all HW cores and threads
because of the memory overhead for each MPI task.

• Hybrid MPI/OpenMP is the recommended programming
model, to achieve scaling capability and code portability.

• Current NERSC systems (Edison/Hopper and Babbage) can
help prepare codes for Cori.

- 7 -

Program Portability/Maintainability

• Many NERSC users are also users at other
DOE labs. Program portability is important to
help maintain single source version of an
application.

• Avoid as much as possible: “#ifdef” for
GPU/CPU, to use CUDA Fortran, OpenCL,
OpenACC or OpenMP, and to use different
compiler directives.

• Regardless of processor architecture, users
will need to modify applications to achieve
performance
– Expose more on-node parallelism in applications

(OpenMP can help)
– Increase application vectorization capabilities

(OpenMP SIMD can help)
– OpenMP is an industry standard that works on

both CPU/GPU, promotes code portability

- 8 -

Knights Landing

Application Readiness for Cori

- 9 -

• We begin to transition our workload
to Cori manycore system
– 10 codes make up 45% of the workload

– 25 codes make up 66% of the workload

• NERSC Exascale Science Application
Program (NESAP)
– 20 application code teams selected to

work with Cray, Intel and NERSC
• Some starts from adding OpenMP, then

explore scaling

– Close collaborations with other DOE
facilities, vendors and science community

– Trainings and lessons learned will be
made available to all application teams
and users.

OpenMP Usage at NERSC

- 10 -

Languages Used at NERSC

- 11 -

• Here data are collected from all NERSC projects

• If by machine hours used, Fortran is even more
popular: 23 out of 36 top codes primarily use Fortran

Programming Models Used at NERSC

- 12 -

• MPI dominates

• 40% of projects use OpenMP

What is X if Use MPI+X at NERSC

- 13 -

OpenMP is about 50%, out of all choices of X

OpenMP Threads Usage at NERSC

- 14 -

• Thread utilization is
~20% and increasing

• OpenMP adoption is
not driven by memory
capacity
– OpenMP usage is

higher on Edison
even though it has
more memory per
core.

• Thread concurrency
increases over
generations
– Grows to match size

of NUMA domains.

MPP hours Hopper Edison

Fraction of hours
using OpenMP

19% 14% 21%

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

C
o

re
 H

o
u

rs
 U

se
d

 C
Y

 2
0

1
4

 (
M

ill
io

n
s)

Hopper

Edison

Brian Austin et. al., NERSC Workload Analysis

0%

10%

20%

30%

40%

50%

60%

Fr
ac

ti
o

n
 o

f
co

re
 h

o
u

rs
 u

se
d

Cores Used

Threads
2
3
4
6
8
12
24

• Thread utilization
increases with node
count
– More than half of the

core hours using 2/3 of
Edison are threaded.
(not shown)

• Thread concurrency
increases with job size
– Jobs with 12 threads per

process is dominate at
higher concurrency.

• Any OpenMP inefficiencies
are outweighed by MPI
scalability issues

High Concurrency Jobs Use More Threads

- 15 -

Brian Austin et. al., NERSC Workload Analysis

Adoption of Threads Varies Across Science

Areas

- 16 -

0%

10%

20%

30%

40%

50%

60%

Fr
ac

ti
o

n
 o

f
co

re
 h

o
u

rs
 u

se
d

Threads

2

4

6

12

24

48

Brian Austin et. al., NERSC Workload Analysis

What do we tell users about

OpenMP scaling

- 17 -

Why Scaling is So Important

- 18 -

Courtesy of Jim Jeffers and James Reinders, Intel

• Scaling of an application is important to get the performance potential on
the Xeon Phi manycore systems.

• Does not imply to scale with “pure MPI” or “pure OpenMP”

• Does not imply the need to scale all the way to 240-way either

• Rather, should explore hybrid MPI/OpenMP, find some sweet spots with
combinations, such as: 4 MPI tasks * 15 threads per task, or 8*20, etc.

OpenMP Scaling Analysis

• For the optimal rank vs. thread balance, assess the (relative)
efficiency of the OpenMP implementation
– Hold number of ranks fixed, varying the number of threads

- 19 -

Courtesy of Chris Daley, NERSC

• Helps to guide to choose optimal number of threads.

MPI vs. OpenMP Scaling Analysis

- -

• Each line represents
multiple runs using fixed
total number of cores =
#MPI tasks x #OpenMP
threads/task.

• Scaling may depend on the
kernel algorithms and
problem sizes.

• In this test case, 15 MPI
tasks with 8 OpenMP
threads per task is optimal.

Courtesy of Chris Daley, NERSC

Flash Kernel on Babbage

• Understand your code by creating the MPI vs. OpenMP scaling plot,
find the sweet spot for hybrid MPI/OpenMP.

• It can be the base setup for further tuning and optimizing on Xeon Phi.

NERSC Systems: Hopper and Edison

- 21 -

• Hopper: NERSC Cray XE6, 6,384 nodes, 153,126 cores.

• 4 NUMA domains per node, 6 cores per NUMA domain.

• Edison: NERSC Cray XC30, 5,576 nodes, 133,824 cores.

• 2 NUMA domains per node, 12 cores per NUMA domain.
2 hardware threads per core.

• Memory bandwidth is non-homogeneous among NUMA domains.

• Edison can be used for exploring OpenMP thread parallelism and
vecotorization.

MPI Process Affinity: aprun “-S” Option

• Process affinity: or CPU pinning, binds MPI process to a CPU or a ranges of
CPUs on the node.

• Important to spread MPI ranks evenly onto different NUMA nodes.

• Use the “-S” option for Hopper/Edison.

- 22 -

0

200

400

600

800

1000

1200

1400

24576*1 12288*2 8192*3 4096*6 2048*12

R
u

n
 T

im
e

(s
ec

)

MPI Tasks * OpenMP Threads

GTC Hybrid MPI/OpenMP
on Hopper, 24,576 cores

with -S -ss

no -S -ss

aprun –n 4 –S 1–d 6

aprun –n 4 –d 6

-S 2 –d 3

Sweet spot is 8 MPI tasks per node,
and 3 thread per MPI task

Thread Affinity: aprun “-cc” Option

• Thread affinity: forces each process or thread to run on a
specific subset of processors, to take advantage of local
process state.

• Thread locality is important since it impacts both memory
and intra-node performance.

• On Hopper/Edison:
• The default option is “-cc cpu” (use it for non-Intel compilers),

binds each PE to a CPU within the assigned NUMA node.
– Pay attention to Intel compiler, which uses an extra thread.

• Use “-cc none” if 1 MPI process per node
• Use “-cc numa_node” (Hopper) or “-cc depth” (Edison) if multiple

MPI processes per node

- 23 -

NERSC KNC Testbed: Babbage

- 24 -

• NERSC Intel Xeon Phi Knights
Corner (KNC) testbed

• 45 compute nodes, each has:

– Host node: 2 Intel Xeon
Sandybridge processors, 8 cores
each.

– 2 MIC cards each has 60 native
cores and 4 hardware threads per
core.

– MIC cards attached to host nodes
via PCI-express.

– 8 GB memory on each MIC card

• Recommend to use at least 2
threads per core to hide latency of
in-order execution.

To best prepare codes on Babbage for Cori:
• Use “native” mode on KNC to mimic KNL,

which means ignore the host, just run
completely on KNC cards.

• Encourage to explore single node optimization
for threading scaling and vectorization on KNC
cards with problem sizes that can fit.

• “Symmetric”, “Offload” modes on KNC and
“OpenMP 4.0 target” work, but are not our
promoted usage models for Babbage.

Babbage MIC Card

- 25 -

Babbage: NERSC Intel Xeon Phi testbed, 45 nodes.

• 1 NUMA domain per MIC card: 60 physical cores, 240 logical cores.

• KMP_AFFINITY, KMP_PLACE_THREADS, OMP_PROC_BIND for
thread affinity control

• I_MPI_PIN_DOMAIN for MPI/OpenMP process and thread affinity
control.

Memory Affinity: “First Touch” Memory

• Memory affinity: allocate memory as close as possible to the core on
which the task that requested the memory is running.

• Memory affinity is not decided by the memory allocation, but by the
initialization. Memory will be local to the thread which initializes it. This
is called “first touch” policy.

• Hard to do “perfect touch” for real applications. Instead, use number of
threads few than number of cores per NUMA domain.

- 26 -

Initialization
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Compute
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {
a[j]=b[j]+d*c[j];}

Courtesy of Hongzhang Shan, LBNL

Nested OpenMP

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{

#pragma omp single {
printf("Level %d: number of threads in the

team: %d\n", level, omp_get_num_threads());
}

}
int main()
{

omp_set_dynamic(0);
#pragma omp parallel num_threads(2) {

report_num_threads(1);
#pragma omp parallel num_threads(2) {

report_num_threads(2);
#pragma omp parallel num_threads(2) {

report_num_threads(3);
}

}
}
return(0);

}

- 27 -

% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1

% setenv OMP_NESTED TRUE
% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2

Level 0: P0
Level 1: P0 P1
Level 2: P0 P2; P1 P3
Level 3: P0 P4; P2 P5; P1 P6; P3 P7

Nested OpenMP

• Beneficial to use nested OpenMP to allow more fine-grained
thread parallelism.

• Achieving best process and thread affinity is crucial in getting
good performance with nested OpenMP, yet it is not
straightforward to do so.

• A combination of OpenMP environment variables and run time
flags are needed for different compilers and different batch
schedulers on different systems.

• Refer to NERSC “Nested OpenMP” web page
– https://www.nersc.gov/users/computational-systems/edison/running-

jobs/using-openmp-with-mpi/nested-openmp/

- 28 -

Example: Use Intel compiler with Torque/Moab on Edison:
setenv OMP_NESTED true
setenv OMP_NUM_THREADS 4,3
setenv OMP_PROC_BIND spread,close
aprun -n 2 -S 1 -d 12 –cc numa_node ./nested.intel.edison

https://www.nersc.gov/users/computational-systems/edison/running-jobs/using-openmp-with-mpi/nested-openmp/

OpenMP 4 SIMD

- 29 -

A year ago:
• To get vector code, you had to use intrinsics, pray the compiler

chose to vectorize a loop, or use compiler specific directives.

#pragma omp simd reduction(+:sum) aligned(a:64)

for(i=0; i<num; i++){

a[i]=b[i]*c[i];

sum=sum+a[i];

}

Warning: Using OpenMP 4 SIMD bypasses the compiler analysis
• Incorrect results possible!
• Poor performance possible!
• Memory errors possible!

Today:

Slide of Jack Deslippe, NERSC

OpenMP 4 SIMD

• Parallelize and Vectorize:
– Fortran: !$OMP do simd [clauses]

– The loop is first divided across a thread team, then subdivide loop
chunks to fit a SIMD vector register.

• SIMD Functions:

– Compilers may not be able to vectorize and inline function calls easily.

– Compilers #pramga declare simd tells compiler to generate SIMD
function

– Useful to use “declare simd” for elemental functions that are called
from within a loop, so compilers can vectorize the function.

- 30 -

C/C++:

#pragma omp declare simd

float min (float a, float b) {

return a<b ? a:b;

}

Adding OpenMP to Your Program

• On Hopper/Edison, under Cray programming environment, Cray
Reveal tool helps to perform scope analysis, and suggests OpenMP
compiler directives to a pure MPI or serial code.
– Based on CrayPat performance analysis
– Utilizes Cray compiler source code analysis and optimization information

• On Babbage, Intel Advisor tool helps to guide threading design
options.

- 31 -

0

10

20

30

40

Pure MPI 1 thread 3 threads 6 threads

R
u

n
 T

im
e

(s
ec

)

poisson_mpi_omp, 4 MPI
tasks, N=1200, on Edison

Performance Analysis And Debugging

• Performance Analysis
– Hopper/Edison:

• Cray Performance Tools
• VTune (on Edison)
• IPM
• Allinea MAP, perf-reports
• TAU

– Babbage:
• VTune
• Intel Trace Analyzer and Collector
• HPCToolkit
• Allinea MAP

• Debugging
– Hopper/Edison: DDT, Totalview, LGDB, Valgrind

– Babbage: Intel Inspector, GDB, DDT

- 32 -

Programming Tips for Adding OpenMP

• Choose between fine grain or coarse grain parallelism
implementation.

• Use profiling tools to find hotspots. Add OpenMP and check
correctness incrementally.

• Parallelize outer loop and collapse loops if possible.

• Minimize shared variables, minimize barriers.

• Decide whether to overlap MPI communication with thread
computation.
– Simplest and least error-prone way is to use MPI outside parallel

region, and allow only master thread to communicate between MPI
tasks.

– Could use MPI inside parallel region with thread-safe MPI.

• Consider OpenMP Tasking.

- 33 -

Why Hybrid MPI/OpenMP Code

is Sometimes Slower Than Pure MPI?

• Serial code sections are not parallelized.
• Thread creation and synchronization overhead
• Cache coherence and false sharing.
• Data placement, NUMA effects.
• Natural one level parallelism problems.
• Not enough work for each thread.
• Load imbalance among threads.
• All threads are idle except one while MPI communication.

– Need overlap comp and comm for better performance.
– Critical Section for shared variables.

• Pure OpenMP code performs worse than pure MPI within
node.

• Lack of optimized OpenMP compilers/libraries.

- 34 -

If a Routine Does Not Scale Well
• Examine code for serial/critical sections, eliminate if possible.
• Reduce number of OpenMP parallel regions to reduce overhead costs.
• Perhaps loop collapse, loop fusion or loop permutation is required to

give all threads enough work, and to optimize thread cache locality. Use
NOWAIT clause if possible.

• Pay attention to load imbalance. If needed, try dynamic scheduling or
implement own load balance scheme.

• Experiment with different combinations of MPI tasks and number of
threads per task. Less MPI tasks may not saturate inter-node bandwidth.

• Test different process and thread affinity options.
• Leave some cores idle on purpose, for memory capacity or bandwidth

capacity.
• Refer to Improving OpenMP Scaling web page:

– https://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/improving-openmp-scaling

- 35 -

Case Studies

- 36 -

NPB: Hybrid MPI/OpenMP on Hopper

- 37 -

On a single node, hybrid MPI/OpenMP NAS Parallel Benchmarks:
• Reduced memory footprint with increased OpenMP threads.
• Hybrid MPI/OpenMP can be faster or comparable to pure MPI.
• Try different compilers.
• Sweet spot: BT: 1-3 threads; LU: 6 threads.

Courtesy of Mike Stewart, NERSC

fvCAM: Hybrid MPI/OpenMP on Hopper

- 38 -

Community Atmospheric Model:
• Memory reduces to 50% with 3 threads but
only 6% performance drop.
• OpenMP time starts to grow from 6
threads.
• Load imbalance in “Dynamics” OpenMP

“Physics” Component

“Dynamics” Component

Courtesy of Nick Wright, et. al, NERSC/Cray Center of Excellence

Total

LBM: Add OpenMP Incrementally

- 39 -

• Lattice Boltzmann Method: a Computational Fluid Dynamics Code.

• Actual serial run time for Collision > 2500 sec (plotted above as 200 sec only for better

display), > 95% of total run time.

• Step 1: Add OpenMP to hotspot Collision. 60X Collision speedup.

• Step 2: Add OpenMP to the new bottleneck, Stream and others. 89X Stream speedup.

• Step 3: Add vectorization. 5X Collision speedup.

• Balanced provides best performance overall.

0

50

100

150

200

250

300

350

400

Serial Step 1 Step 2 Step 3

Ti
m

e
 (

se
c)

Steps to Parallelize LBM

PostStream

Stream

PostCollision

Collision

Compare OpenMP Affinity Choices

Courtesy of Carlos Rosale, TACC

MFDn: Overlap Comm and Comp

- 40 -

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

pure MPI hybrid A hybrid B hybrid C hybrid D

Sp
ee

d
u

p

!$OMP PARALLEL
if (my_thread_rank < 1) then

call MPI_xxx(…)
else

do some computation
endif

!$OMP END PARALLEL

• Need at least MPI_THREAD_FUNNELED.
• While master or single thread is making

MPI calls, other threads are computing!
• Must be able to separate codes that can

run before or after halo info is received.
Very hard!

• Lose compiler optimizations.

• MFDn: a nuclear physics code.

• Hopper. Pure MPI: 12,096 MPI tasks.

• Hybrid A: hybrid MPI/OpenMP, 2,016 MPI* 6 threads.

• Hybrid B: hybrid A, plus: merge MPI_Reduce and MPI_Scatter into
MPI_Reduce_Scatter, and merge MPI_Gather and MPI_Bcast into MPI_Allgatherv.

• Hybrid C: Hybrid B, plus: overlap row-group communications with computation.

• Hybrid D: Hybrid C, plus: overlap (most) column-group communications with
computation.

Courtesy of H. M. Aktulga et. al.

MPAS-O: Tasking

• MPAS-O model uses unstructured meshes, data stored in
memory is unstructured. Next contiguous element in an
array may not be a neighbor of the previous element.
Elements are decomposed into blocks.

• Threaded Block Loops: OpenMP Tasking

- 41 -

block => domain % blocklist

do while (associated(block))

call compute_block(block)

block => block % next

end do

block => domain % blocklist
do while (associated(block))

block_d = block
!$omp task
firstprivate(block_d)
call compute_block(block_b)
!$omp end task
block => block % next

end do
!$omp task wait

Courtesy of Douglas Jacobsen et. al., NCAR Multi-Core 2015 Workshop

MPAS-O: Threaded Element Loops

• Use Pre-computed
decompositions (SPMD)

• Use OpenMP Directives
(loop parallelism)

- 42 -

eleStart = get_ele_start(iThread)
eleEnd = get_ele_end(iThread)

do iElement = eleStart, eleEnd
… compute on elements ...

end do

!$omp do private(...)
do iElement = 1, nElements

… compute on elements ...
end do
!$omp end do

• Loop parallelism better than SPMD
• Both better than pure MPI

Courtesy of Douglas Jacobsen et. al., NCAR Multi-Core 2015 Workshop

MPAS-O: Compare Schedules and

SIMD

- 43 -

• Good to explore different OpenMP schedules
• Good to experiment with different combinations of MPI tasks and OpenMP

threads to find a sweet spot. “2-12 Static SIMD OMP” is the best in this case.
• SIMD directive helps a little, to vectorize loops compilers can not auto-

vectorize.

Courtesy of Douglas Jacobsen et. al., NCAR Multi-Core 2015 Workshop

MPAS-O: Strong Scaling with Full Code

- 44 -

• OpenMP helps scaling for larger core counts
• “OMP (N=8,d=3)” is the best in this case

Courtesy of Douglas Jacobsen et. al., NCAR Multi-Core 2015 Workshop

BoxLib: Tiling Threading Model

• Traditional threading model
– Domain decomposed into N

boxes, distributed among M
MPI tasks, each with m threads.

– Each thread works on an entire
box, load imbalance especially
in AMR applications due to
uneven work load among MPI
tasks

– Fine grain OpenMP

- 45 -

Many such regions as below:
!$OMP parallel do private (i)
do j=1,15

do i =1,16
… some work here …
end do

end do
!$OMP end parallel do

!$OMP parallel
loop over tiles

get tile box
… some work here …

end loop over tiles
!$OMP end parallel

• Tiling threading model
– Iteration space within each box is

divided into smaller “tiles”, which
are distributed among threads

– Better load balancing
– Tile size can be tuned for optimal

cache reuse.
– Coarse grain OpenMP

Courtesy of Brian Friesen, NERSC and
Jessica Kawana, Williamete University

BoxLib: OpenMP Scaling with Tiling

- 46 -

• Tiling implementation strong scales efficiently up to ~120
threads on Babbage.

• For simple operators, tiling is always a win.
• For complicated operators (e.g., low Mach number flows),

results are mixed.

Courtesy of Brian Frieson., NERSC

BoxLib: Hybrid MPI/OpenMP Scaling with

Tiling

Courtesy of Andrew Nonaka, LBNL

• Best performance with MPI+12 OpenMP threads

XGC1: Remove “-heap-arrays 64” Compiler Flag

• This Intel compiler flag puts automatic arrays and temp
of size 64 kbytes or larger on heap instead of stack.

• Surprisingly it slows down kernels by >6X.

• Allocation and access of private copies on the heap are
very expensive.

• Does not affect explicit-shape arrays.

• Remove this flag, and set OMP_STACKSIZE to a large
value: run time improves from 348 sec to 43 sec.

• Alternative: use !$OMP THREADPRIVATE.

XGC1: Nested OpenMP

• Always make sure to use best thread affinity. Avoid using threads across
NUMA domains.

• Currently:

• Is a bit slower than (work ongoing):

• Will try:

• Use num_threads clause in source code to set threads for regions not
using the same number of threads for most other regions. For other
regions, use OMP_NUM_THREADS env for simplicity and flexibility.

- 49 -

export OMP_NUM_THREADS=6,4
export OMP_PROC_BIND=spread,close
export OMP_NESTED=TRUE
export OMP_STACKSIZE=8000000
aprun -n 200 -N 2 -S 1 -j 2 -cc numa_node ./xgca

export OMP_NUM_THREADS=24
export OMP_NESTED=TRUE
export OMP_STACKSIZE=8000000
aprun -n 200 -d 24 -N 2 -S 1 -j 2 -cc numa_node ./xgca

export KMP_HOT_TEAMS=1
export KMP_HOT_TEAMS_MAX_LEVELS=2

Courtesy of Robert Hager, PPPL and NESAP XGC1 team.

NWChem CCSD(T): Baseline OpenMP

- 50 -

311

96

215

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
u

n
 T

im
e

 (
s

e
c

o
n

d
s

)

OMP_NUM_THREADS

Baseline OpenMP

Total Time

Time in Loop Nests

Time in GetBlock

• Due to memory limitation, can only run with 1 MPI process per MIC.
• OpenMP added at the outermost loops of hotspots: Loop Nests. Scales

well up to 120 threads.
• GetBlock is not parallelized with OpenMP. Hyper-threading hurts

performance.
• Total time has perfect scaling from 1 to 16 threads. Best time at 120

threads.
• Balanced affinity gives best performance.

Courtesy of Hongzhang Shan et al., LBNL

NWChem CCSD(T): OpenMP

Optimizations

- 51 -

124

62
62

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
u

n
 T

im
e
 (

s
e

c
o

n
d

s
)

OMP_NUM_THREADS

Optimized OpenMP

Total Time

Time in Loop Nests

Time in GetBlock

• GetBlock optimizations: parallelize sort, loop unrolling.
• Reorder array indices to match loop indices.
• Merge adjacent loop indices to increase number of iterations.
• Align arrays to 64 bytes boundary.
• Exploit OpenMP loop control directive, provide complier hints.
• Total speedup from base is 2.3x.

Courtesy of Hongzhang Shan et al., LBNL

NWChem FMC: Add OpenMP to HotSpots

(OpenMP #1)

- 52 -

1	

10	

100	

er
in
ts
p	

ss
ss
m
	

de
st
bu
l	

ob
as
ai
	

tra
c1
2	

xw
pq
	

as
se
m
	

pr
e4
n	

w
t2
w
t1
	

am
sh
f	

To
ta
l	

R
u
n
n
in
g	
Ti
m
e
s	
(s
)	

Pure	MPI	 OMP=1	 OMP=2	 OMP=3	 OMP=4	

• Total number of MPI ranks=60; OMP=N means N threads per MPI rank.
• Original code uses a shared global task counter to deal with dynamic load balancing

with MPI ranks
• Loop parallelize top 10 routines in TEXAS package (75% of total CPU time) with

OpenMP. Has load-imbalance.
• OMP=1 has overhead over pure MPI.
• OMP=2 has overall best performance in many routines.

Courtesy of Hongzhang Shan et al., LBNL

NWChem FMC: OpenMP Task

Implementation (OpenMP #3)

- 53 -

Fock Matrix Construction — OpenMP Task
Implementation
c$OMP parallel
myfock() = 0
c$OMP master
current_task_id = 0
mytid = omp_get_thread_num()
My_task = global_task_counter(task_block_size)
for ijkl = 2∗ntype to 2 step −1 do

for ij = min(ntype, ijkl − 1) to max(1, ijkl − ntype) step −1 do
kl = ijkl − ij
if (my_task .eq. current_task_id) then

c$OMP task firstprivate(ij,kl) default(shared)
create_task(ij,kl, ...)
c$OMP end task
my_task=global_task_counter(task_block_size)

end if
current_task_id = current_task_id + 1

end for
end for
c$OMP end master
c$OMP taskwait
c$OMP end parallel
Perform Reduction on myfock to Fock matrix

• Use OpenMP tasks.
• To avoid two threads updating Fock matrix simultaneously,

a local copy is used per thread. Reduction at the end.

• OpenMP task model is flexible and
powerful.

• The task directive defines an explicit task.
• Threads share work from all tasks in the

task pool.
• Master thread creates tasks.
• The taskwait directive makes sure all

child tasks created for the current task
finish.

• Helps to improve load balance.

Courtesy of Hongzhang Shan et al., LBNL

NWChem FMC: Various OpenMP

Optimizations

- 54 -

72

71

183

54

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

T
o

ta
l
R

u
n

 T
im

e

(s
e

c
o

n
d

s
)

Total Hardware Thread Concurrency

Fock Matrix Construction Time

Flat MPI

OpenMP #1 (loop-level)

OpenMP #2 (module-level)

OpenMP #3 (Tasks)

• Flat MPI is limited to a total of 60 ranks due to memory limitation.
• OpenMP #1 uses flat MPI up to 60 MPI processes, then uses 2, 3, and 4 threads per MPI rank.
• OpenMP #2 and #3 are pure OpenMP.
• OpenMP #2 module-level parallelism saturates at 8 threads (critical and reduction related).

Then when over 60 threads, hyper-threading helps.
• OpenMP #3 Task implementation continues to scale over 60 cores. 1.33x faster (with 180

threads) than pure MPI.
• The OpenMP Task implementation benefits both MIC and Host.

10	

100	

1000	

10000	

1	 2	 4	 8	 16	

R
u
n
n
in
g	
Ti
m
e
s	
(s
)	

No.	of	Threads	

OpenMP	Module	

Pure	MPI	

OpenMP	Task	

Host

MIC

Courtesy of Hongzhang Shan et al., LBNL

NWChem FMC: MPI/OpenMP Scaling and

Tuning

- 55 -

• Another way of showing scaling analysis result.
• Sweet spot is either 4 MPI tasks with 60 OpenMP threads per task,

or 6 MPI tasks with 40 OpenMP threads per task.
• 1.64x faster than original flat MPI.
• 22% faster than 60 MPI tasks with 4 OpenMP threads per task.

45240-way

180-way

120-way

60-way

45

Courtesy of Hongzhang Shan et al., LBNL

NWChem: OpenMP “Reduce” Algorithm

- 56 -

• Plane wave Lagrange multiplier
– Many matrix multiplications of complex numbers, C = A x B

– Smaller matrix products: FFM, typical size 100 x 10,000 x 100

– Original threading scaling with MKL not satisfactory

• OpenMP “Reduce” or “Block” algorithm
- Distribute work on A and B along the k dimension

- A thread puts its contribution in a buffer of size m x n

- Buffers reduced to produce C

- OMP teams of threads

FFM

Courtesy of Mathias Jacquelin, LBNL

NWChem: OpenMP “Reduce” Algorithm

• Better for smaller inner dimensions, i.e. for FFMs
• Multiple FFMs can be done concurrently in different thread pools
• Threading enables us to use all 240 hardware threads
• Best “Reduce”: 10 MPI, 6 teams of 4 threads

- 57 -

MKL
1MPI, 240 threads

Best “Reduce”
10 MPI, 6 teams of 4 threads

Courtesy of Mathias Jacquelin, LBNL

Use Multiple Threads in MKL

• By Default, in OpenMP parallel regions, only 1 thread will be
used for MKL calls.
– MKL_DYNAMICS is true by default

• Nested OpenMP can be used to enable multiple threads for
MKL calls. Treat MKL as a nested inner OpenMP region.

• Sample settings

- 58 -

export OMP_NESTED=true
export OMP_PLACES=cores
export OMP_PROC_BIND=close
export OMP_NUM_THREADS=6,4
export MKL_DYNAMICS=false

“OMP target device” Works on Babbage

- 59 -

program test
use omp_lib
write(*,*) 'cpu max threads:',omp_get_max_threads()
!$omp target device(0)
write(*,*) 'mic max threads:',omp_get_max_threads()
!$omp parallel
!$omp master
write(*,*) 'mic nbr threads:',omp_get_num_threads()
!$omp end master
!$omp end parallel
!$omp end target

!$omp target device(0)
!$omp teams num_teams(1)
write(*,*) 'team', omp_get_team_num(), ' mic max
threads:',omp_get_max_threads()
!$omp parallel
!$omp master
write(*,*) 'team',omp_get_team_num(),' mic nbr
threads:',omp_get_num_threads()
!$omp end master
!$omp end parallel
!$omp end teams
!$omp end target
end program test

export KMP_AFFINITY=balanced
export OMP_NUM_THREADS=1
export MIC_ENV_PREFIX=MIC
export MIC_OMP_NUM_THREADS=60

% cat myjob.host.2680.out
cpu max threads: 1
mic max threads: 60
mic nbr threads: 60
team 0 mic max threads: 60
team 0 mic nbr threads: 236

Not recommended for
preparing for Cori, but it is
good to know that it works 

CESM MG2: Vectorization Prototype

• Use compiler report to check and make sure key functions are
vectorized (and all functions on the call stack are vectorized too)
– Elemental functions need to be inlined
– “-qopt-report=5” reports highest level of details.
– “-ipo” is needed if functions are in different source codes.

• Add !$OMP DECLARE SIMD and !DIR$ ATTRIBUTE FORCEINLINE
when needed.

- 60 -

CESM MG2: OMP SIMD ALIGNED

• Align data on specific byte boundaries; directive based approach
with OMP directive:
– Portable solution: !$OMP SIMD ALIGNED (….)

• Tells the compiler that the arrays are aligned

• Asserts that there are no dependencies

• Requires to use PRIVATE or REDUCTION clauses to ensure
correctness

• Forces the compiler to vectorize, whether or not it thinks if it is a
good idea or not

– As compared to: !DIR$ VECTOR ALIGNED

• Tells the compiler that the arrays are aligned

• Intel compiler specific, not portable

• !$OMP SIMD ALIGNED is independent of vendor, however it can be
overly intrusive in code

- 61 -

CESM MG2: OMP SIMD ALIGNED

• Using the “ALIGNED” attribute achieved 8% performance gain when
the list is explicitly provided.

• However, the process is tedious and error-prone, and often times
impossible in large real applications.
– !$OMP SIMD ALIGNED added in 48 loops in MG2 kernel (by Christopher

Kerr), many with list of 10+ variables

!$OMP
SIMD
ALIGNED

!$OMP
SIMD

!dir$
VECTOR
ALIGNED

-align
array64byt
e

-openmp Time per
iteration
(usec) on
Edison

x x x 444

x x 446

x x x 484

x x 482

x x 452

x 456

473

CESM MG2 Kernel: OMP SIMD ALIGNED

• How can compilers know better which arrays are aligned so
users do not have to specify?
– A variable can be declared as aligned

– A variable can be set to aligned with a compiler flag

– When in scope, hopefully complier should know

• Inquired with Fortran Standard:

– Equivalent of “!$DIR ATTRIBUTES ALIGNED: 64 :: A”
• C/C++ standard: float A[1000] __attribute__((aligned(64)));

• Not in Fortran standard yet

– Equivalent of the “-align array64byte” compiler flag

• Exist in Intel (Fortran only) and Cray compilers

• What about other compilers?

Srinath Vadlamani’s testSIMD Suite

• Python script to test which SIMD options are able to get close to AVX performance.

• Tests ran on Edison. Use “ifort” native compiler (15.0.1.133), default “-O2” optimization:
not completely “–no-vec”.

• “aligned” is essential to get good performance. Although none is as good as “-xavx”.

- 64 -

Compiler and language options Run Time

None 4.05

-xavx 3.29

!$omp declare simd(init) 40.02

!$omp declare simd(init) uniform(n) 40.00

!$omp declare simd(init) simdlen(4) uniform(n) 37.83

!$omp declare simd(init) simdlen(4) 37.71

!$omp declare simd(init) aligned(a:32) 4.26

!$omp declare simd(init) aligned(a:32) uniform(n) 4.30

!$omp declare simd(init) simdlen(4) aligned(a:32) 4.26

!$omp declare simd(init) simdlen(4) aligned(a:32) uniform(n) 4.28

SIMD ALIGNED Restrictions

• Restriction for “OMP SIMD ALIGNED” in Fortran: "The type
of list items appearing in the aligned clause must be C_PTR
or Cray pointer, or the list item must have the POINTER or
ALLOCATABLE attribute.”

• Could this be relaxed to allow aligned static arrays to be
included in the list? A static array can be specified as
aligned either with compiler directives or by using alignment
compiler flags (in certain compiler implementations).

• We have a kernel code written in Fortran, with a manually
specified aligned list.
– One compiler could not compile since it conforms to the specification.

– Another compiler compiles it anyway, and achieves speedup.

- 65 -

Users Like to Have

• Threaded libraries
– MKL has threaded libraries. Has mechanisms to use with 1 or more thrds.
– Users need other thread-safe libraries, such as PETSc.
– Should we work with libraries developers to always inquiry if they are in

threaded region first? (must be OpenMP aware at run time)
– Or is it better for libraries to provide separate APIs for single-thread and

multi-thread versions?

• More consistent behaviors
– Example: default OMP_MAX_ACTIVE_LEVELS
– Example: default OMP_NUM_THREADS

• Had discussions on whether set to 1 or max
• In some situations, it is better to set to 1, e.g. library calls within threaded region

for thread safety
• Most cases compilers are already using max available, however hard to reach an

agreement on what is the max available cores (and hardware threads), especially
when MPI affinity choices are considered. Possible oversubscription.

• Decided to ask users to always set environment variable OMP_NUM_THREADS
explicitly

- 66 -

Summary

• OpenMP is a fun and powerful language for shared memory
programming.

• Hybrid MPI/OpenMP is recommended for many next
generation architectures (Intel Xeon Phi for example),
including NERSC-8 system, Cori.

• Keep portability in mind, use portable programming models.

• Optimizations targeted for one architecture can help
performance for other architectures.

• Keep promoting and working with users on OpenMP usage
at NERSC.

- 67 -

Thank you.

- 68 -

