
Towards Using OpenMP in
Embedded Systems

OpenMPCon 2015

RWTH Aachen University, Germany

Eric Stotzer

1

2

• Software for embedded systems is increasing in complexity.

• Can OpenMP be used as a programming model that can cope with this

complexity?

• Embedded systems have constraints such as real-time deadlines and

limited memory resources.

• Embedded Systems can be broadly classified as:

– Event-driven

– Compute and Data intensive

• Can the OpenMP tasking model be extended to support an event-

driven programming model?

• Embedded Multi-Processor System on Chips are integrating increasing

numbers of heterogeneous processors.

• Can the OpenMP accelerator model become a generalized MPSoC

programming model?

Introduction

References and Acknowledgements

• Dr. Barbara Chapman’s High Performance Computing and Tools group

at the University of Houston and their work with TI and the multicore

association.

• W. Wolf, Computers as Components, 2nd Ed., 2008.

• E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A

Cyber-Physical Systems Approach, 2011.

• R. Oshana, DSP Software Development Techniques for Embedded

and Real-Time Systems, 2006.

3

4

Agenda
• Background on Embedded Systems

• OpenMP in Embedded Systems

• Event-driven model

• Multi-Processor System-on-Chip (MPSoC) model

• Summary and Conclusion

Characteristics of Embedded
Systems

Towards OpenMP in Embedded Systems

5

Digital Video
Recorder/Server

Digital

Still Cameras

IP phones

Multimedia
Phones

Digital Motor Control

Bluetooth

Digital TV

PDAs

Analog and

Embedded Processing

Digital Radio

Digital Audio

Converged Devices

Automotive

Medical

Disk Drives

Wireless
Infrastructure

Power Over

Ethernet

Affordable

Handsets

VoIP Gateway

Video Security

PMP Player

Embedded Processing is all around you
From digital communications and entertainment to medical services, automotive systems and

wide-ranging applications in between.

Characteristics of Embedded Systems

• Computers whose job is not primarily information processing, but rather

is interacting with physical processes. [Lee and Seshia]

• An embedded computing system is any device that includes a

programmable computer but is not itself a general-purpose computer.

[Wolf]

• Take advantage of application characteristics to optimize the design.

(don’t need all the general-purpose bells and whistles). [Wolf]

• Real-time systems: processing must keep up with the rate of I/O.

– Hard real time: missing deadline causes failure.

– Soft real time: missing deadline results in degraded performance.

– Multi-Rate: events occurring at varying rates

– Performance is about meeting deadlines (finishing ahead of a deadline

might not help)

• Operating environment constraints:

– Power, Temperature, Size, etc…

– Programs run forever 7

Embedded Systems Respond to Inputs
from the Real World

Temperature

Pressure

Position

Speed

Flow

Humidity

Sound

Light

Identification

The Real
World

Amplifier
Data

Converter

Power
Management

Logic

Embedded
Processing

Amplifier Data
Converter

Clocks &
Timing

Low Power
RF

Interface

Embedded Platforms are Diverse

MSP430F1x Ultra-low-power Microcontrollers

• Ultra-low power microcontrollers (MCUs)

• Mutliple Heterogeneous Cores Integrated onto a single Chip

• Arm processors capable of running SMP Linux

• Acceleration via DSPs, GPUs and hard accelerators

• I/O and peripherals targeted at specific application areas

• Processors dedicated for Real-Time control

Programming Embedded Systems

• Concurrency is intrinsic and not always about exploiting Parallelism

• Interaction with I/O peripherals and sensors

• Real-Time

• Timers and Interrupts

• Heterogeneous Memory Architecture (RAM, ROM, Flash, etc…)

• C Programming and Assembly Language

• All code in a new system is often re-compiled.

• Microkernels and Real Time Operating Systems (RTOS)

10

Input
Input

Embedded Processing Paradigm

Input

• Simple system: single I-P-O is easy to manage

• As system complexity increases (multiple threads) Needs an RTOS:

 Can they all meet real time ?

 Priorities of threads/algos ?

 Synchronization of events?

 Data sharing/passing ?

Event + ISR
Device Driver

Data Processing
Algorithm

Event + ISR
Device Driver

Input
Input

Process

Input
Input

Output

OpenMP in Embedded
Systems

Towards OpenMP in Embedded Systems

12

High Performance Embedded Computing

Keystone I: C6678 SoC

• Eight 8 C66x cores

• Each with 32k L1P, 32k

L1D, 512k L2

• 1 to 1.25 GHz

• 320 GMACS

• 160 SP GFLOPS

• 512 KB/Core of local L2

• 4MB Multicore Shared

Memory (MSMC)

• Multicore Navigator (8k

HW queues) and

TeraNet

• Serial-RapidIO, PCIe-II,

Ethernet, 1xHyperlink

Why OpenMP?

• Traditional approaches:

– Manually partition workloads to

individual cores

– Optimize partitioned regions for

the core

– This offers high entitlement

BUT

– Partition must be redone for each

system configuration

– Not portable

– Developer needs detailed

knowledge of SoC architecture

• Increased time to market

15

• What OpenMP offers:

– Modify code with pragmas and

directives

– Parallelization and load balancing

are abstracted from the user

– Easy and incremental

– This offers high performance

AND

– Standard tools are portable to

many architectures

– SoC architecture details are

abstracted from the developer

– Data parallelization, task

parallelization, accelerator offload,

and more are all possible

OpenMP Execution Model

• Fork-join – master thread creates a team of threads on

encountering a parallel region

• Data Parallel Work sharing constructs are used to

distribute work among the team (e.g. loop iterations)

• Task parallel Task construct used to generate tasks which

are executed by one of the threads on the team

Parallel Regions

Master

Thread

OpenMP Memory Model

• Threads have access to shared
memory

– Each thread can have a temporary
view of the shared memory (e.g.
registers, cache)

– Temporary view made consistent
with shared view of memory at
synchronization points

• Threads have private memory

– For data local to each thread

Master thread

Parallel Region

Synchronization Points

P P P P

$ $ $ $

Shared Memory

OpenMP on DSPs – Execution and MModel

Execution Model:

– 8 C66x DSP cores, one thread per core

– Master thread begins execution on DSP core 0

– DSP cores 1-7 are worker cores, participate in executing the parallel region

– Runtime supports a maximum of 8 threads

– Nested parallel regions are executed by the encountering thread, no
additional threads spawned

– No hardware cache coherency across DSP cores

– OpenMP runtime makes a thread’s view of memory consistent with shared
view by performing cache operations at synchronization points

18

MSMC 6MB64/72b

DDR3

66x 66x66x66x

1MB 1MB 1MB 1MB

66x 66x66x66x

1MB 1MB 1MB 1MB

Private Memory (L2 Cache)

768KB per core available for applications

On-chip shared memory

4.5MB available for applications

DDR (2GB to 8GB)
Off-chip shared memory

1.5GB window accessible by code on DSPs

OpenMP Solution Stack

OpenMP run-time

Parallel Thread API

Directives,

Compiler
OpenMP library

Environment

variables

Parallel Application

Distributed or SMP RTOS

SMP Linux or

Distributed MCAPI or …

OpenMP in Embedded Systems

• OpenMP can execute on an embedded RTOS or perhaps
even “bare-metal”

• Shared memory:
– precise hardware cache coherency is not required

– Exploit weak consistency: implement hybrid
software/hardware cache systems

• OpenMP can be successful in embedded systems:
– Just like other high level languages have been adapted to

embedded systems

• OpenMP is useful in embedded systems for the compute
intensive parts of an application.
– But what about the other parts of the program?

Event-Driven Models
Towards OpenMP in Embedded Systems

21

Event Loop

• Embedded Systems respond to

events.

• Events are typically inputs from

external sensors or other actors in

the system.

• The system must stay responsive

while events are processed.

• Similar to the model used in GUI

programming where an event is a

mouse-click

– See “Pyjama: OpenMP-like

implementation for Java, with GUI

Extensions”. [Vikas, Giacaman,

Sinnen. PMAM 2013]

22

while (1)

{

event = get_event();

switch(event)

{

case EVENT1:

process_event1();

break;

case EVENT2:

process_event2();

break;

case EVENT3:

process_event3();

break;

}

}

Event Driven running on a Real-Time O/S (RTOS)

Hwi
“Driver”

Task
Hwi

“Driver”

Scheduler Data Sharing/Passing Synchronization Memory Mgmt

• Pre-emptive Scheduler to design system to meet real-time (including sync/priorities)

Input
Input

Input Stream Stream
Input

Input
Process

Input
Input

Output

Queue Queue

RTOS vs GP/OS

GP/OS (e.g. Linux) RTOS (e.g. SYS/BIOS)

Scope General Specific

Size Large: 5M-50M Small: 5K-50K

Event response 1ms to .1ms 100 – 10 ns

File management FAT, etc FatFS

Dynamic Memory Yes Yes

Threads Processes, pThreads, Ints ISR, Task, Idle

Scheduler Time Slicing Preemption

Host Processor ARM, x86, Power PC ARM, MSP430, M3, C28x, DSP

Events are often triggered by interrupts

25

main()

{
init

while(1)

nonRT
}

ISR
get buffer
process
printf()

main()
{
init
RTOS_start()

}

S
c

h
e

d
u

le
r

ISR
get buffer
process
printf()

Idle
nonRT

+ instrumentation

RTOS Thread Types
P

ri
o

ri
ty

 Implements ‘urgent’ part of real-time event

 Hardware interrupt triggers ISRs to run

 Priorities set by hardware

ISR

Interrupts

Task

Tasks

 Runs programs concurrently under separate contexts

 Usually enabled to run by posting a ‘semaphore’
(a task signaling mechanism)

 Multiple priority levels

Idle

Background

 Runs as an infinite loop (like traditional while(1) loop)

 Single priority level

ISR’s handle urgent activities
INTx

ISR:

urgent code

Semaphore_post();
Follow-up Task

ints disabled rather than all this time

ISR

 Fast response to interrupts

 Minimal context switching

 High priority only

 Can post a Task

 Use for urgent code only – then
post follow up activity

Task

 Latency in response time

 Context switch performed

 Selectable priority levels

 Can post other Tasks

 Execution managed by
scheduler

Interrupt Service Routines (ISRs) and Tasks

 Process hardware interrupt

 All TSR’s share system software
stack

ISR

start

end

“run to

completion”

 Unblocking triggers execution

 Each Task has its own stack, which
allows them to pause (i.e. block)

 Topology: prologue, loop,
epilogue…

Task

start

end

Pause

Semaphore_post (Sem);

(blocked
state)

Semaphore_pend

System
Stack

(ISR) Private
Stack

(Task)

ISR

task (p1)

Idle

task (p1)

Scheduling Rules on a Single Thread

Lowest Priority

Running

Ready

Legend

 Processes of same priority are scheduled first-in first-out (FIFO)

time

Highest Priority

Count > 0
Decrement

count

pend

Return

TRUE

true

Semaphore Pend

Return

FALSE

timeout
expires

SEM
posted

false

Block task

yes

no

timeout = 0

Semaphore_pend (Sem, timeout);

Task

pending on

sem?

Ready first

waiting task

Return

True

Task switch will occur

if higher priority task

is made ready

Semaphore Post

Increment count
False

PostSemaphore_post (Sem);

#pragma omp parallel
{

#pragma omp single
{
p = listhead;
while (p) {

#pragma omp task
process(p);
p=next(p);

}
}

}

OpenMP: Task Construct

• Task model supports irregular data dependent parallelism

• Conceptually tasks are assigned to a queue

• Threads execute tasks that they remove from a task queue

Event Driven Task Model

33

main()

{

#pragma omp task isr(1)

ISR_hwi1();

#pragma omp task priority(1)

process_buffer();

#pragma omp task priority(2)

idle_task();

#pragma omp taskwait

}

ISR_hw1()

{

*buf++ = *XBUF;

cnt++;

if (cnt >= BLKSZ) {

omp_sem_post(swiFir);

count = 0;

pingPong ^= 1;

}

Process_buffer()

{

while (1)

{

omp_sem_pend(swiFir);

Filter(buf);

}

}

Event Driven Task Model 2

34

main()

{

#pragma omp task isr(1)

ISR_hwi1();

#pragma omp task priority(2)

idle_task();

#pragma omp taskwait

}

ISR_hw1()

{

*buf++ = *XBUF;

cnt++;

if (cnt >= BLKSZ) {

#pragma omp task priority(1)

filter_buffer();

count = 0;

pingPong ^= 1;

}

filter_buffer()

{

#pragma omp parallel for

for (i=0; i<BLKSZ: i++)

outp[i] = F(buf[i]);

}

Event-Driven Tasking Model Summary

• We want to improve the productivity of embedded programmers with

higher level models.

• Embedded Systems are very often event driven

• Can the OpenMP tasking model be extended to implement an event

driven model?

• Can ISR’s be special tasks?

• Is the new task priority clause coming in 4.1 sufficient or …

• Would the task scheduling algorithm need to change or at least be

adaptable (like the loop schedule clause)?

• Are persistent tasks that communicate using point-to-point

communication (see the previous semaphore examples) more efficient

than launching new tasks each time an event occurs?

35

MPSoC Model
Towards OpenMP in Embedded Systems

36

• Market demand for increased processing performance, reduced power,

and efficient use of board area

• Demand satisfied by adding cores

– Mix of general purpose CPUs, DSPs

• Challenges:

– How to efficiently segment tasks between compute engines

– How to effectively and quickly program multiple cores of different types

Single Core (C66x)
Multicore (C6678)

Heterogeneous

Multicore (66AK2H)

CPU + Accelerator
Network of Heterogeneous

Multicore (HP Proliant m800)
HP Moonshot chassis

with m800s

Trends in multicore heterogeneous SoCs

37
Algorithm implementation must scale to fit available computing power

Keystone II: 66AK2H12/06 SoC

OpenMP 4.0 Accelerator Model

Dispatch Model (target regions)

• Notion of host device and target device

• Use ‘target’ constructs to offload regions of code

from host to target device

• Target regions can contain parallel regions

Execution Model

• Each device has it’s own threads

• No migration of threads across devices

Memory Model

• Each device has an initial data environment

• Data mapping clauses determine how variables

are mapped from the host device data

environment to that of the target device

• Variables in different data environments may

share storage

39

void add_openmp(const float *a, const float *b,
float *c, int size)

{
#pragma omp target map(to:a[0:size],b[0:size],size) \

map(from: c[0:size])
{

int i;
#pragma omp parallel for
for (i = 0; i < size; i++)

c[i] = a[i] + b[i];
}

}

target construct

• Variables a, b, c and size initially reside in host memory

• On encountering a target construct:

– Space is allocated in device memory for variables a[0:size], b[0:size], c[0:size] and size

– Any variables annotated ‘to’ are mapped from host memory to device memory

– The target region is executed on the device

– Any variables annotated ‘from’ are mapped from device memory to host memory

void vadd_openmp(float *a, float *b, float *c, int size)
{

#pragma omp target map(to:a[0:size],b[0:size],size) \
map(from: c[0:size])

{
int i;
#pragma omp parallel for
for (i = 0; i < size; i++)

c[i] = a[i] + b[i];
}

}

a

b

c

size

a

b

c

size

Host memory Device memory

to

to

to

from

40

Accelerator Memory Model (Logical View)

A

Contiguous

Memory

(CMEM)

DSPsARMs

Variable A in Linux contiguous memory

• DDR/MSMC “physically” shared by ARM(s) and DSP(s)

• However, DSPs do not have a memory management unit (MMU)

• => DSPs must operate out of contiguous memory

• 2 logical views depending on location of variable in Linux memory

• Paged virtual memory vs.

• Contiguous virtual memory

• Variable in paged memory => map clauses translate to copy operations

• Variable in contiguous memory => map clauses translate to ARM-side cache

operations

A

Paged

virtual

memory

space

A

Contiguous

Memory

space

Variable A in Linux paged memory

ARMs DSPs

Contiguous Memory management API

• __malloc_ddr/msmc Allocate a buffer in contiguous memory

(DDR/MSMC SRAM) with given size and return a host pointer to it

• __free_ddr/msmc Free device memory with the given host pointer

float* a = (float*) __malloc_ddr(bufsize); // 128 MB

for (int i=0; i < NumElements; ++i)
a[i] = 1.0;

#pragma omp target map(to:a[0:size],size) map(from: a[0:size])
{

int i;
#pragma omp parallel for
for (i = 0; i < size; i++)

a[i] *= 2.0;
}

__free_ddr(a);

Allocate buffer in

device memory

Map to is a cache

write-back operation

on host. No copy is

performed

Map from is a cache

invalidate operation

on host. No copy

performed

Free buffer

Initialize on host

42

‘local’ map type

• TI has added a local map type - maps a variable to the L2 scratchpad

memory.

• Such variables are “private” to the target region

– They have an undefined initial value on entry to the target region

– Any updates to the variable in the target region cannot be reflected back to

the host.

• Mapping host variables to target scratchpad memory provides

significant performance improvements.

• In the default configuration, on each DSP core, 768K is available via

the local map type.

43

PERCEPTION PROCESSING
• Stereo vision

• Optical flow

• Surround view

• Structure from motion

• Localization and Mapping

• Lane detection

• Obstacle detection

• Pedestrian detection

• Traffic sign recognition

• Object classification

• Object Tracking

• …

PLANNING & CONTROL
• Path planning

• Motion planning

• …

SENSOR PROCESSING

Autonomous Vehicle (AV) and Advanced
Driver Assistance Systems (ADAS)

6x-10x Cameras

6x-10x Radar

1x-4x LIDARs

Thermal/IR

8x-12x Ultrasonic

T

D

Ax

TDA

x

T

D

Ax

TDA

x

TI-Confidential – Selective Disclosure

MPSoC Example: TDA2x

2.5MB L3 RAM w/ECC

DDR2/3 32b
w/ECC

DDR2/3 32b

WDTEDMA

System Services

Connectivity and IO

15 Timer

+*
-<<

C66x DSP+*
-<<

C66x DSP

EV

E

ARM M4ARM M4

High Speed Interconnect 28 nm

Display Subsystem

Overlay
GFX Pipeline

Video Pipeline

DVOUT
HDMI

Video Front End

ARM A15

Video Codec Accelerator
IVA HD 1080p Video

Graphics Engine
2x SGX544

EVE
EVE

EVE

 Two Next Generation DSP Cores: C66x™
– Up to 650 MHz

– Floating Point Extension

 Dual ARM Cortex™ A15 Cores
– Up to 1000MHz

– NEON Vector Floating point

 Dual ARM Cortex™ M4 Cores
– 200 MHz

 Four Vision Accelerator Cores: EVE
– Upto 650 MHz (8bit or 16bit

 Video Codec Accelerator
– IVA-HD core running at up to 532MHz

 Graphics Engine
– Two SGX544 cores delivering capability to render 170Mpoly/s /

5000MPixel/s / 34GFLOPs at 500Mhz

 Internal Memory
– DSPs: each w/ 32 KB L1D, 32 KB L1P, unified 256 KB L2 Cache

– ARM : 32 KB L1D, 32 KB L1P, combined 2 MB L2 Cache

– On Chip L3 RAM: 2.5MB with ECC

 Peripherals Highlights (1.8/ 3.3V IOs)

– Video Inputs: Six 16 bit ports

– Display system Digital Video Output

– Two EMIFs: 2x 32bit wide DDR2/3/3L @ 532MHz, one with ECC

– GPMC: general purpose memory controller

– Support for NOR Flash

– PCIe, 2x Gbit EMAC with AVB support

– 2x DCAN (High end CAN controller)

– 10x UART, 5x I2C, 4x McSPI, Quad SPI, McASP, 15x Timers,
WDT, GPIO Package

– 23x23mm BGA (ABC), 0.8mm ball pitch

– 17x17mm BGA (AAS), 0.65mm ball pitch

 Power (~1.0V Core, 1.8/ 3.3V IOs)
– Target @ 125C Tj ~4-5W, depending on use case

PCIe GMAC
x2

NAND/
NOR

DCAN
x2

SPI
x4

UART
x10

McASP JTAG QSPIGPMC

System Mailbox System x13

I2C
x5

ARM A15

Scalable Performance
Low Power

Safety

ADAS Applications

Front Camera

Integrate 3D Graphics
Scalable Analytics

Security

Surround View

Park Assist
Rear Camera Radar

Low Power
Small Footprint

Scalable Analytics

Scalable performance
MCU Integration

Safety

Sensor Fusion

Performance
Safety

Security

Performance
ISP Integration

Scalable Analytics

Mirror Replacement

Small Footprint
ISP Integration

Scalable Analytics

Driver Monitoring

C
o

re
 A

p
p

lic
a

ti
o

n
s

E
m

e
rg

in
g

 A
p

p
lic

a
ti
o

n
s

46

One HW and SW architecture allowing for
scalability from premium to entry-level vehicles.

47

Watch CES2015 Videos

TDA3x

ADAS

Processor

TDA2x

ADAS

Processor

Surround View, Ultrasonic

and Front Camera
Front Camera

PD, TSR, Lane Detection,

Sparse Optical Flow, Stereo Disparity

PD, TSR, Lane Detection

Surround View

Surround View, Ultrasonic Sensor,

PD, TSR

http://www.ti.com/lsds/ti/automotive/processors/adas/overview.page#videos

Can OpenMP become a complete
embedded MPSoC programming model?
• We can see how OpenMP can be used to exploit parallelism in

compute-intensive parts of the algorithm.

• We can see how OpenMP could be used to offload accelerated

algorithms from the ‘host’ processor domain to an accelerator.

• Can OpenMP provide an embedded event-driven MPSoC

(heterogeneous) model where a device can launch code on any other

device.

– ARM M4 cores running an RTOS respond to real-time events and dispatch

processing to the other cores in the system.

– DSP cores are assigned specific real-time events that they process locally.

– ARM A15 processors running SMP Linux manage the user Interface and

then dispatch processing (graphics) to other cores (GPUs)

• A combination of the event-driven model and the MPSoC model.

48

MPSoC Event Driven Task Model

49

main()

{

#pragma omp task device(M4) isr(1)

ISR_hwi1();

#pragma omp task device(DSP) isr(2)

ISR_hwi2();

#pragma omp task device(DSP) priority(2)

process_driver_fitness();

#pragma omp task device(DSP) priority(3)

process_vision_frame();

#pragma omp task device(A15) priority(1)

user_interface();

#pragma omp task device(M4,A15,DSP) priority(1)

idle_task();

#pragma omp taskwait

}

ISR_hw1()

{

*frame++ = *XBUF;

cnt++;

if (cnt >= BLKSZ) {

#pragma omp target update\

device(DSP)\

to(frame[:BLKSZ])

omp_sem_post(VisFrame);

count = 0;

pingPong ^= 1;

}

Process_vision_frame()

{

while (1)

{

omp_sem_pend(VisFrame);

CNNetwork(frame);

}

}

Summary and Conclusions
Towards OpenMP in Embedded Systems

50

Other Topics

• Expressing constraints (balance performance and energy consumption)

– See IWOMP 2015 papers(s)

• Heterogeneous memory

– Place objects in specific memory areas

– RAM, ROM, SRAM, off-chip and on-chip

• Hierarchical memory systems

– Fast but limited scratch pad memory

– Data streaming via asynchronous DMA engines

• Resiliency

– Embedded systems run forever

– A mechanism to respond and recover from unexpected behavior

– Is there something in the omp cancel construct?

• Specialization

– OpenMP is getting bigger.

– Rebuild OpenMP run-time at program build time

– Indicate number of threads on a device at program build time

Summary

• OpenMP is the industry standard for directive based
parallel programming

• OpenMP can express the parallelism in the compute
intensive parts of an embedded program

• Embedded systems are often event-driven and
programmers must write custom code to implement this
model.

• Extend OpenMP tasking to support to the event-driven
model (or create a new concept – the process?)

• OpenMP 4.0 added an accelerator host+device model

• Generalize the OpenMP accelerator model to a
heterogeneous MPSoC model

• Vision: Embedded programmers using OpenMP to
implement event-driven systems for complex MPSoCs

