
Advanced
OpenMP® Tutorial

Credits, Credits, Credits
Presented by

Michael Klemm (OpenMP CEO)
Xavier Martorell
Xavier Teruel

Slides developed by members of the OpenMP Language Committee

Christian Terboven
Michael Klemm
Ruud van der Pas
Eric Stotzer
Bronis R. de Supinski
Sergi Mateo

2

Agenda

3

Topic Speaker Time

What is “Advanced OpenMP?”/Miscellaneous
features Xavier M. 10 min

OpenMP Tasking Xavier T. 50 min

NUMA Awarenesss Xavier M. 20 min

Vectorization/SIMD Michael 40 min

Updated Slides

4

http://bit.ly/201809tutorial

What is “Advanced OpenMP”?

What is “Advanced OpenMP”?

Multiple choice:
1. All the things that you may have heard of, but have never used…
2. Things which have appeared in OpenMP since you took that

undergraduate course
3. Anything beyond !$omp parallel for
4. All of the above

6

All of the above is a good answer. We may not be able to cover
it all, though!

Recent OpenMP Features

Major:
• Tasking (coming up soon, Xavier T.)
• NUMA awareness (Xavier M.)
• Vectorization (Michael)
• Offload to accelerator devices (not covered today)
Minor (next, small, simple, give you time to wake up )
• Lock/critical/atomic (5.0) hints
• New dynamic schedule

7

Lock/critical/atomic hints
What?
A way of giving the implementation more information about the way
you’d like a lock or critical section to be implemented
A new lock initialization function omp_init_lock_with_hint(…)
A hint clause on omp critical (and, in 5.0 omp atomic)
A set of synchronization hints

omp_sync_hint_{none, contended/uncontended,
speculative/nonspeculative}

8

Lock/critical/atomic hints
Why?

9

Modern processors support
speculative execution (“transactional
memory”). Present in processors
from Intel, IBM, …
Allows concurrent execution of
critical sections if they do not conflict
Can give the performance of a fine-
grained reader/writer lock while only
having to code a simple coarse
grained lock

Take std::unordered_map<uint32_t,uint32_t> and wrap it in OpenMP locks.
class lockedHash {

std::unordered_map<uint32_t, uint32_t> theMap;
omp_lock_t theLock;

public:
lockedHash(omp_lock_hint_t hint) {omp_init_lock_with_hint(&theLock, hint);}

void insert(uint32_t key, uint32_t value) {
omp_set_lock(&theLock);
theMap.insert({key,value});
omp_unset_lock(&theLock);

}

uint32_t lookup(uint32_t key) {
omp_set_lock(&theLock);
auto result = theMap.find(key);
omp_unset_lock(&theLock);
return result == theMap.end() ? 0 : result->second;

}
};

Measure total machine throughput as we add cores (1T/C), doing lookups or
updates as fast as they can when using omp_sync_hint_none and
omp_sync_hint_speculative to initialize theLock.

Experiment details

10

Only change lock initialization…
No changes to lock use

New dynamic scheduling option

schedule({monotonic,nonmonotonic}:dynamic)
nonmonotonic allows an iteration stealing scheduling scheme
which can out-perform a default dynamic schedule.
Beware: nonmonotonic is becoming the default schedule in
OpenMP 5.0
Difference: monotonic requires each thread sees iterations which only
move in one direction, nonmonotonic allows them to move
“backwards”
e.g. in for(i=0; i<5; i++) a thread may see 3,4,0 with a
nonmonotonic:dynamic schedule.

12

Agenda

13

Topic Speaker Time

What is “Advanced OpenMP?”/Miscellaneous
features Xavier M. 10 min

OpenMP Tasking Xavier T. 50 min

NUMA Awarenesss Xavier M. 20 min

Vectorization/SIMD Michael 40 min

OpenMP Tasking
Irregular and Recursive Parallelism

1

OpenMP Tasking

• What is tasking?
• Introduction by Example: Sudoku
• Data Scoping
• Scheduling and Dependencies
• Taskloops
• More Tasking Stuff

2

What is tasking?
First: What is “Classic” OpenMP?
“Classic” OpenMP treats threads as a fundamental concept
• You know how many there are (omp_get_num_threads())
• You know which one you are (omp_get_thread_num())
• A major concern is how to share work between threads

• Choice of schedule clause on for loops
• Explicit decisions based on omp_get_thread_num()
• A whole section in the standard on Worksharing Constructs!

• The standard describes semantics in terms of threads, e.g. for barrier
“All threads of the team executing the binding parallel region must execute the
barrier region…”

3

What is tasking?
Task model
Tasking lifts your thinking
• Forget about threads, and about scheduling work to them
• Instead think how your code can be broken into chunks of work which

can execute in parallel (“tasks”)
• Let the runtime system handle how to execute the work

• We’re not going to discuss how this works, but it is fun. Talk to me if you want
to find out more.

• Think in terms of work being complete rather than threads getting to
some point in the code

• Ideas from Cilk, also implemented in TBB for C++

4

Problems with traditional worksharing
• Worksharing constructs do not compose well
• Pathological example: parallel dgemm

• Writing such code either
• oversubscribes the system,
• yields bad performance due to OpenMP overheads, or
• needs a lot of glue code to use sequential dgemm only for sub-matrixes

5

void example() {
#pragma omp parallel

{
compute_in_parallel(A);
compute_in_parallel_too(B);
// dgemm is either parallel or sequential,
// but has no orphaned worksharing
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, n, k, alpha, A, k, B, n, beta, C, n);

} }

Ragged Fork/Join

• Traditional worksharing can lead to ragged fork/join patterns

6

void example() {

compute_in_parallel(A);

compute_in_parallel_too(B);

cblas_dgemm(…, A, B, …);

}

Introduction by Example: Sudoku

Let‘s solve Sudoku puzzles with brute multi-core force

Find an empty cell
For value in 0:15

If (not valid) continue
Recurse for next empty cell or print result
if this was the last cell.

Wait for completion

Note: this is a 16x16 sudoku so we‘re
seaching ~16220 = 8.e264 configurations!

7

Why Do We Need Tasks?

This is a recursive problem
Tasks will take different amounts of time

Some rapidly reach an inconsistent state
Some nearly succeed, so run for much longer
One succeeds (assuming a well defined problem!)

We want to exploit parallelism at every level
But nested OpenMP parallelism is “complicated” 

8

The OpenMP Task Construct

9

Each encountering thread/task creates a new task
Code and data is packaged up
Tasks can be nested

Into another task directive
Into a Worksharing construct

Data scoping clauses:
shared(list)
private(list) firstprivate(list)
default(shared | none)

C/C++

#pragma omp task [clause]
... structured block ...

Fortran

!$omp task [clause]
... code ...
!$omp end task

Barrier and Taskwait Constructs

OpenMP barrier (implicit or explicit)
• All tasks created by any thread of the current Team are guaranteed to have

completed at barrier exit

Task barrier: taskwait
• Encountering task is suspended until child tasks complete

• Applies only to children, not all descendants!

10

C/C++

#pragma omp barrier

C/C++

#pragma omp taskwait

Fortran

!$omp barrier

Fortran

!$omp taskwait

Parallel Brute-force Sudoku

This parallel algorithm finds all valid solutions
Find an empty cell
For value in 0:15

If (not valid) continue
Recurse for next empty cell,or print result

Wait for completion

11

#pragma omp task
needs to work on a new copy
of the Sudoku board

#pragma omp taskwait
wait for all child tasks

first call contained in a
#pragma omp parallel
#pragma omp single
such that one task starts the
execution of the algorithm

Parallel Brute-force Sudoku (2/3)

OpenMP parallel region creates a team of threads
#pragma omp parallel
{
#pragma omp single

solve_parallel(0, 0, sudoku2,false);
} // end omp parallel

• Single construct: One thread enters the execution of solve_parallel
• the other threads wait at the end of the single …

• … and are ready to pick up tasks from the work queue

12

Parallel Brute-force Sudoku (3/3)

The actual implementation
for (int i = 1; i <= sudoku->getFieldSize(); i++) {

if (!sudoku->check(x, y, i)) {
#pragma omp task firstprivate(i,x,y,sudoku)

{
// create from copy constructor
// CSudokuBoard new_sudoku(*sudoku);
sudoku.set(y, x, i);
if (solve_parallel(x+1, y, &sudoku))
sudoku.printBoard();

} // end omp task
}

}
#pragma omp taskwait

13

#pragma omp task
Must work on a new copy of
the Sudoku board

#pragma omp taskwait
wait for all child tasks

Performance Evaluation

14

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best we
can can do?

Performance Analysis

15

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling gives a good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds => average duration of a task
is ~4.4 μs

Tracing gives more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller down the
call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

Performance and Scalability Tuning Idea: when you have created enough tasks to
keep you cores busy, stop creating more tasks!
• if-clause
• final-clause, mergeable-clause
• natively in your program code

Example: stop recursion
Analogous to choosing a chunk-size in a schedule(dynamic) loop

Performance Evaluation

16

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff

speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff
Now have
>16x
speedup
where we
had <4x
before!

Task Data Scoping

Some rules from Parallel Regions apply:
Static and Global variables are shared
Automatic Storage (local) variables are private

If shared scoping is not inherited:
Orphaned Task variables are firstprivate by default!
Non-Orphaned Task variables inherit the shared attribute!
→ Variables are firstprivate unless shared in the enclosing context

17

Data Scoping Example

18

int a = 1;
void foo()
{

int b = 2, c = 3;
#pragma omp parallel private(b)
{

int d = 4;
#pragma omp task
{

int e = 5;

}
}

}

// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

value of a: 1
value of b: undefined (Why? )
value of c: 3
value of d: 4
value of e: 5

Use default(none)!

19

int a = 1;
void foo()
{

int b = 2, c = 3;
#pragma omp parallel private(b)
{

int d = 4;
#pragma omp task
{

int e = 5;
// Scope of a: shared, value of a: 1
// Scope of b: firstprivate, value of b: undefined
// Scope of c: shared, value of c: 3
// Scope of d: firstprivate, value of d: 4
// Scope of e: private, value of e: 5

}
}

}

Hint: Use default(none) to be
forced to think about every variable if
the scope is not obvious

Scheduling

• Default: Tasks are tied to the thread that first executes them this is
normally not the creator. Scheduling constraints:

• Only the thread to which a task is tied can execute it
• A task can only be suspended at task scheduling points

• Task creation, task finish, taskwait, barrier, taskyield
• If task is not suspended in a barrier, the executing thread can only switch to a

direct descendant of a task tied to the thread

• Tasks created with the untied clause are never tied
• Allowed to resume at task scheduling points in a different thread
• No scheduling restrictions, e.g., can be suspended at any point
• Gives more freedom to the implementation, e.g., load balancing

20

Unsafe use of untied Tasks

• Problem: Because untied tasks may migrate between threads at any
point, thread-centric constructs can yield unexpected results

• Remember when using untied tasks:
• Avoid threadprivate variables
• Avoid any use of thread-ids (i.e., omp_get_thread_num())
• Be careful with critical region and locks

21

Good advice
anyway!

if Clause

• When the expression in an if clause on a task evaluates to false
• The encountering task is suspended
• The new task is executed immediately
• The parent task resumes when the new task finishes
→ Used for optimization, e.g., avoid creation of small tasks

22

The taskyield Directive

• The taskyield directive specifies that the current task can be
suspended in favour of execution of a different task.

• Hint to the runtime for optimization and/or deadlock prevention
• But, since it‘s only a hint it can be ignored, so you cannot rely on it to prevent

deadlock

23

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield

taskyield Example (1/2)

#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while(!omp_test_lock(lock)) {

#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

24

Taskyield allows the spinning task to
be suspended here, letting the
executing thread perform other work.

priority Clause

• The priority is a hint to the runtime system for task execution order
• Among all tasks ready to be executed, higher priority tasks are recommended to

execute before lower priority ones
• priority is non-negative numerical scalar (default: 0)
• priority <= max-task-priority ICV

• environment variable OMP_MAX_TASK_PRIORITY

• You cannot rely on task execution order being determined by this clause; it‘s only
a hint and can be ignored!

25

C/C++

#pragma omp task priority(priority-value)
... structured block ...

Fortran

!$omp task priority(priority-value)
...

!$omp end task

final Clause

• For recursive problems that perform task decomposition, stopping
task creation at a certain depth exposes enough parallelism but
reduces overhead.

• Beware: merging the data environment may have side-effects
void foo(bool arg)
{

int i = 3;
#pragma omp task final(arg) firstprivate(i)

i++; // No externally visible effect if in task...
printf(“%d\n”, i); // Could print 3 or 4 depending on arg

}

26

C/C++

#pragma omp task final(expr)

Fortran

!$omp task final(expr)

mergeable Clause

• If the mergeable clause is present, the implementation is allowed
to merge the task‘s data environment

• if the generated task is undeferred or included
• undeferred: if clause present and evaluates to false
• included: final clause present and evaluates to true

• As far as I know, no compiler or runtime exploits final or
mergeable so using them is currently futile (other than to provide
evidence to use to hassle your compiler vendor )

27

C/C++

#pragma omp task mergeable

Fortran

!$omp task mergeable

The taskgroup Construct

• Specifies a wait for completion of child tasks and their descendant
tasks

• This is deeper sychronization than taskwait, but
• with the option to restrict to a subset of all tasks (as opposed to a barrier)

28

C/C++

#pragma omp taskgroup
... structured block ...

Fortran

!$omp taskgroup
... structured block ...
!$omp end task

Task Dependencies: Motivation
• Task dependences are a way to define task-execution constraints

29

int x = 0;
#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(in: x)
std::cout << x << std::endl;
#pragma omp task depend(inout: x)
x++;

}

OpenMP 4.0

int x = 0;
#pragma omp parallel
#pragma omp single
{
#pragma omp task
std::cout << x << std::endl;
#pragma omp taskwait
#pragma omp task
x++;

}

OpenMP 3.1

t1

t2

t1

t2

Task’s creation time

Task’s execution time

Time

Task dependencies let us remove “strong”
synchronizations, increasing the look ahead!

Controlling when a task starts
• In more complicated codes we have dependencies between tasks
• For instance, suppose one task(b) cannot start until another(a) has

finished because b needs to consume data which was written by a
• OpenMP provides task dependencies to let you express these

constraints
• depend(in:var) => this task consumes var
• depend(out:var) => this task produces var
• depend(inout:var) => this task consumes var and updates it
Coming in OpenMP 5.0
• depend(mutexinoutset:var)only one task using var can run at a time

30

The depend Clause

• The task dependence is fulfilled when the predecessor task has completed
• in dependency-type: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in an out or
inout clause.

• out and inout dependency-type: The generated task will be a dependent task of
all previously generated sibling tasks that reference at least one of the list items in
an in, out, or inout clause.

• mutexinoutset: only one task in the set may execute at any time (OpenMP 5.0!)
• The list items in a depend clause may include array sections.

31

C/C++

#pragma omp task depend(dependency-type: list)
... structured block ...

Fortran

!$omp task depend(dependency-type: list)
... code ...

!$omp end task

Example: Cholesky factorization

32

void cholesky(int ts, int nt, double* a[nt][nt]) {
for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
#pragma omp task depend(inout: a[k][k])
potrf(a[k][k], ts, ts);

// Triangular systems
for (int i = k + 1; i < nt; i++) {
#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])
trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix
for (int i = k + 1; i < nt; i++) {
for (int j = k + 1; j < i; j++) {
#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])
dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}
#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])
syrk(a[k][i], a[i][i], ts, ts);

}
}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {
for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
potrf(a[k][k], ts, ts);

// Triangular systems
for (int i = k + 1; i < nt; i++) {
#pragma omp task
trsm(a[k][k], a[k][i], ts, ts);

}
#pragma omp taskwait

// Update trailing matrix
for (int i = k + 1; i < nt; i++) {
for (int j = k + 1; j < i; j++) {
#pragma omp task
dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}
#pragma omp task
syrk(a[k][i], a[i][i], ts, ts);

}
#pragma omp taskwait

}
}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

Example: Cholesky factorization

33

Using 2017 Intel compiler

Jack Dongarra on OpenMP Task Dependencies:
[…] The appearance of DAG scheduling constructs in the
OpenMP 4.0 standard offers a particularly important example
of this point. Until now, libraries like PLASMA had to rely on
custom built task schedulers; […] However, the inclusion of DAG
scheduling constructs in the OpenMP standard, along with the
rapid implementation of support for them [...], throws open
the doors to widespread adoption of this model in academic
and commercial applications for shared memory. We view
OpenMP as the natural path forward for the PLASMA library
and expect that others will see the same advantages to
choosing this alternative.

Full article
here: http://www.hpcwire.com/2015/10/19/numerical-
algorithms-and-libraries-at-exascale/

http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

The taskloop Construct
• Parallelize a loop using OpenMP tasks

• Cut loop into chunks
• Create a task for each loop chunk

• Syntax (C/C++)
#pragma omp taskloop [simd] [clause[[,] clause],…]
for-loops

• Syntax (Fortran)
!$omp taskloop[simd] [clause[[,] clause],…]
do-loops
[!$omp end taskloop [simd]]

34

Clauses for taskloop Construct
• Taskloop construct inherits clauses both from worksharing constructs

and the task construct
• shared, private
• firstprivate, lastprivate
• default
• collapse
• final, untied, mergeable

• grainsize(grain-size)
Chunks have at least grain-size and max 2*grain-size loop iterations

• num_tasks(num-tasks)
Create num-tasks tasks for iterations of the loop

35

Example: Sparse CG

36

for (iter = 0; iter < sc->maxIter; iter++)
{

precon(A, r, z);
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay(z, beta, n, p);
matvec(A, p, q);
vectorDot(p, q, n, &dot_pq);
alpha = rho / dot_pq;
axpy(alpha, p, n, x);
axpy(-alpha, q, n, r);
sc->residual = sqrt(rho) * bnrm2;
if (sc->residual <= sc->tolerance)

break;
rho_old = rho;

}

void matvec(Matrix *A, double *x, double *y) {
// ...

#pragma omp parallel for \
private(i,j,is,ie,j0,y0) \
schedule(static)

for (i = 0; i < A->n; i++) {
y0 = 0;
is = A->ptr[i];
ie = A->ptr[i + 1];
for (j = is; j < ie; j++) {

j0 = index[j];
y0 += value[j] * x[j0];

}
y[i] = y0;

}
// ...

}

Example: Sparse CG

37

#pragma omp parallel
#pragma omp single
for (iter = 0; iter < sc->maxIter; iter++)
{

precon(A, r, z);
vectorDot(r, z, n, &rho);
beta = rho / rho_old;
xpay(z, beta, n, p);
matvec(A, p, q);
vectorDot(p, q, n, &dot_pq);
alpha = rho / dot_pq;
axpy(alpha, p, n, x);
axpy(-alpha, q, n, r);
sc->residual = sqrt(rho) * bnrm2;
if (sc->residual <= sc->tolerance)

break;
rho_old = rho;

}

void matvec(Matrix *A, double *x, double *y) {
// ...

#pragma omp taskloop private(j,is,ie,j0,y0) \
grain_size(500)

for (i = 0; i < A->n; i++) {
y0 = 0;
is = A->ptr[i];
ie = A->ptr[i + 1];
for (j = is; j < ie; j++) {

j0 = index[j];
y0 += value[j] * x[j0];

}
y[i] = y0;

}
// ...

}

Conclusions

• Tasking allows you
• to exploit recursive

parallelism which is hard to
do with classic worksharing

• to exploit parallelism in
places where there are
complicated data-flow
dependences between
computations

• to go beyond threads

38

39

Performance Analysis

40

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling gives a good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds => average duration of a task
is ~4.4 μs

Tracing gives more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller down the
call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

NUMA Awareness
Or: A Game of Latency and Bandwidth

1

OpenMP and Performance

• Two of the more obscure things that can negatively impact
performance are cc-NUMA effects and false sharing

• Neither of these are inherent to OpenMP, but to shared-memory
parallel programming

• But they most show up because you used OpenMP
• They are important enough so that OpenMP worries about them

2

Non-uniform Memory

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

3

Non-uniform Memory

Serial code: all array elements are
allocated in the memory of the NUMA
node closest to the core executing the
initializer thread (first touch)

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N-1]
4

First Touch Memory Placement

First Touch w/ parallel code: all array
elements are allocated in the memory
of the NUMA node that contains the
core that executes the thread that
initializes the partition

double* A;

A = (double*)
malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2-1] A[N/2] … A[N-1]
5

Static scheduling

Serial vs. Parallel Initialization

• Stream example with and without parallel initialization
• 2 socket system with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]
b[0,(N/2)-1]
c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]

6

Get Information about the System Topology

• Before you design a strategy for thread binding, you should have a
basic understanding of the system topology

• Options:
• Intel MPI‘s cpuinfo tool

• module switch openmpi intelmpi
• cpuinfo

• Delivers information about the number of sockets (= packages) and the mapping of
processor IDs to CPU cores used by the OS

• hwlocs‘ hwloc-ls tool
• hwloc-ls

• Displays a graphical representation of the system topology, separated into NUMA nodes,
along with the mapping of processor IDs to CPU cores used by the OS and additional
information on caches

7

Decide for Binding Strategy

• Selecting the „right“ binding strategy depends not only on the
topology, but also on the characteristics of your application

• Putting threads far apart, i.e., on different sockets
• May improve the aggregated memory bandwidth available to your application
• May improve the combined cache size available to your application
• May decrease performance of synchronization constructs

• Putting threads close together, i.e., on two adjacent cores that possibly share
some caches

• May improve performance of synchronization constructs
• May decrease the available memory bandwidth and effective cache size

• If you are unsure, just try a few options and then select the best one

8

OpenMP 4.0: Places + Policies

• Define OpenMP places
• set of OpenMP threads running on one or more processors
• can be defined by the user, i.e., OMP_PLACES=cores

• Define a set of OpenMP thread affinity policies
• SPREAD: spread OpenMP threads evenly among the places,

partition the place list
• CLOSE: pack OpenMP threads near master thread
• MASTER: collocate OpenMP thread with master thread

• Goals
• user has a way to specify where to execute OpenMP threads for locality between

OpenMP threads / less false sharing / memory bandwidth

9

OMP_PLACES Environment Variable

• Assume the following machine:

• 2 sockets, 4 cores per socket, 4 hyper-threads per core

• Abstract names for OMP_PLACES:
• threads: Each place corresponds to a single hardware thread on the target machine.
• cores: Each place corresponds to a single core (having one or more hardware

threads) on the target machine.
• sockets: Each place corresponds to a single socket (consisting of one or more cores)

on the target machine.

p0 p1 p2 p3 p4 p5 p6 p7

10

OpenMP 4.0: Places and Binding Policies

• Example‘s objective:
• separate cores for outer loop and near cores for inner loop

• Outer parallel region: proc_bind(spread), Inner: proc_bind(close)
• spread creates partition, close binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7
11

More Examples (1/3)

• Assume the following machine:

• 2 sockets, 4 cores per socket, 4 hyper-threads per core

• Parallel Region with two threads, one per socket
• OMP_PLACES=sockets
• #pragma omp parallel num_threads(2) \
proc_bind(spread)

p0 p1 p2 p3 p4 p5 p6 p7

12

More Examples (2/3)

• Assume the following machine:

• Parallel Region with four threads, one per core, but only on the first
socket

• OMP_PLACES=cores
• #pragma omp parallel num_threads(4) \
proc_bind(close)

p0 p1 p2 p3 p4 p5 p6 p7

13

More Examples (3/3)

• Spread a nested loop first across two sockets, then among the cores
within each socket, only one thread per core

• OMP_PLACES=cores
• #pragma omp parallel num_threads(2) \
proc_bind(spread)
#pragma omp parallel num_threads(4) \
proc_bind(close)

14

Looking at the execution: top

• Processor binding example
• OMP_PROC_BIND=true ./matmul

• Binds master thread to hw thread 0, thread 1 to hw thread 1...
• OMP_PROC_BIND=close OMP_NUM_THREADS=2 ./matmul

• Binds master thread to hw thread 0, thread 1 to hw thread 1

15

Cpu0 : 99.7%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st
Cpu1 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu2 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu3 : 0.0%us, 0.0%sy, 0.0%ni, 98.3%id, 1.7%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 98.0%us, 1.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 1.0%si, 0.0%st
Cpu5 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu6 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

1 socket, 4 cores per socket, 2 hyper-threads per core

Looking at the execution

• Processor binding example
• OMP_PROC_BIND=spread OMP_NUM_THREADS=2 ./matmul

• Binds master thread to hw thread 0, thread 1 to hw thread NUMPROCs/2

16

Cpu0 : 99.3%us, 0.0%sy, 0.0%ni, 0.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 0.0%us, 0.3%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu2 : 87.1%us, 0.0%sy, 0.0%ni, 12.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu3 : 0.0%us, 0.3%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 0.0%us, 1.0%sy, 0.0%ni, 66.0%id, 33.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu5 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu6 : 0.3%us, 0.0%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 0.3%us, 0.3%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

1 socket, 4 cores per socket, 2 hyper-threads per core

Places API: Example

• Simple routine printing the processor ids of the place the calling
thread is bound to:

void print_binding_info() {
int my_place = omp_get_place_num();
int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);
omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {
printf("%d ", place_processors[i]);

}
printf("\n");

free(place_processors);
}

19

Retrieving information from OpenMP

• OMP_DISPLAY_ENV=TRUE VERBOSE

20

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = ‘2'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = ‘SPREAD'
OMP_PLACES = '{0},{4},{1},{5},{2},{6},{3},{7}'
OMP_STACKSIZE = '0'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'
OMP_MAX_TASK_PRIORITY = '0'

OPENMP DISPLAY ENVIRONMENT END

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201511'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '2'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'SPREAD'
OMP_PLACES = '{0},{4},{1},{5},{2},{6},{3},{7}'
OMP_STACKSIZE = '0'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'
OMP_MAX_TASK_PRIORITY = '0'
GOMP_CPU_AFFINITY = ''
GOMP_STACKSIZE = '0'
GOMP_SPINCOUNT = '300000'

OPENMP DISPLAY ENVIRONMENT END

A First Summary

• Everything is under control now?
• In principle yes, but only if

• threads can be bound explicitly,
• data can be placed well by first-touch, or can be migrated,
• you focus on a specific platform (= os + arch) → no portability

• What if the data access pattern changes over time?

• What if you use more than one level of parallelism?

21

NUMA Strategies: Overview

• First Touch: Modern operating systems (i.e., Linux >= 2.4) determine the physical
location of a memory page during the first page fault, when the page is first
„touched“, and put it close to the CPU that causes the page fault

• Explicit Migration: Selected regions of memory (pages) are moved from one
NUMA node to another via explicit OS syscall

• Next Touch: The binding of pages to NUMA nodes is removed and pages are put
in the location of the next „touch“; well supported in Solaris, expensive to
implement in Linux

• Automatic Migration: No support for this in current operating systems
• Old SGI IRIX systems supported automatic migration

22

User Control of Memory Affinity

• Explicit NUMA-aware memory allocation:
• By carefully touching data by the thread which later uses it
• By changing the default memory allocation strategy

• Linux: numactl command
• By explicit migration of memory pages

• Linux: move_pages()

• Example: using numactl to distribute pages round-robin:
• numactl –interleave=all ./a.out

23

OpenMP Memory Allocators (v5.0)

• New clause on all constructs with data sharing clauses:
• allocate([allocator:] list)

• Allocation:
• omp_alloc(size_t size, omp_allocator_t *allocator)

• Deallocation:
• omp_free(void *ptr, const omp_allocator_t *allocator)
• allocator argument is optional

• allocate directive
• Standalone directive for allocation, or declaration of allocation stmt.

24

Example: Using Memory Allocators (v5.0)

25

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator
double *p = (double *) malloc(N*M*sizeof(*p));

#pragma omp parallel private(a)
{

some_parallel_code();
}

#pragma omp target firstprivate(c)
{

#pragma omp parallel private(a)
{

some_other_parallel_code();
}

}

omp_free(p);
}

allocate(my_allocator:a)

allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

allocate(omp_high_bw_mem_alloc:a)

omp_alloc(N*M*sizeof(*p), my_allocator);

OpenMP Task Affinity (v5.0)

• OpenMP version 5.0 will support task affinity

#pragma omp task affinity(<var-reference>)

• Task-to-data affinity
• Hint to execute task as close as possible to the location of the data

• Very similar information to target map(...) and task depend(...)

26

OpenMP Task Affinity

27

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

void task_affinity() {
double* B;

#pragma omp task shared(B)
{

B = init_B_and_important_computation(A);
}

#pragma omp task firstprivate(B)
{

important_computation_too(B);
}

#pragma omp taskwait
}

B[0] … B[N]

OpenMP Task Affinity

28

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

void task_affinity() {
double* B;

#pragma omp task shared(B) affinity(A[0:N])
{

B = init_B_and_important_computation(A);
}

#pragma omp task firstprivate(B) affinity(B[0:N])
{

important_computation_too(B);
}

#pragma omp taskwait
}

B[0] … B[N]

Partitioning Memory w/ OpenMP version 5.0

29

void allocator_example() {
double *array;

omp_allocator_t *allocator;
omp_alloctrait_t traits[] = {

{OMP_ATK_PARTITION, OMP_ATV_BLOCKED}
};
int ntraits = sizeof(traits) / sizeof(*traits);
allocator = omp_init_allocator(omp_default_mem_space, ntraits, traits);

array = omp_alloc(sizeof(*array) * N, allocator);

#pragma omp parallel for proc_bind(spread)
for (int i = 0; i < N; ++i) {

important_computation(&array[i]);
}

omp_free(array);
}

Summary

• (Correct) memory placement is crucial for performance for most
applications

• OpenMP programmers can exploit placement policies to align data
with compute threads

• OpenMP version 5.0 will bring additional features for more portable
memory optimizations

30

OpenMP SIMD Programming

1

Evolution of SIMD on Intel® Architectures

2

SSE

AVX

AVX-512

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP

SIMD Instructions –Arithmetic Instructions

Operations work on each individual SIMD element

3

vaddpd dest, source1, source2

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit

SIMD Instructions – Fused Instructions

Two operations (e.g., multiply & add) fused into one SIMD instruction

4

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

source1

source2

dest (=source1)

c7 c6 c5 c4 c3 c2 c1 c0 source3

vfmadd213pd source1, source2, source3
512 bit

*

=

+

SIMD Instructions – Conditional Evaluation

Mask register limit effect of instructions to a subset of the SIMD
elements

5

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

True False True False False True False True mask

vaddpd dest{k1}, source1, source2

SIMD Instructions – Broadcast

Assign a scalar value to all SIMD elements

6

s

512 bit

scalar

s s s s s s s s dest

vbroadcast dest, scalar

SIMD Instructions – Shuffles, Swizzles, Blends

Instruction to modify data layout in the SIMD register

7

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

swizzle

“move”

vmovapd dest, source{dacb}

Auto-vectorization

• Compilers offer auto-vectorization as an optimization pass
• Usually part of the general loop optimization passes
• Code analysis detects code properties that inhibit SIMD vectorization
• Heuristics determine if SIMD execution might be beneficial
• If all goes well, the compiler will generate SIMD instructions

• Example: Intel® Composer XE
• -vec (automatically enabled with –O2)
• -qopt-report

8

?

Interlude: Data Dependencies

• Suppose two statements S1 and S2
• S2 depends on S1, iff S1 must execute before S2

• Control-flow dependence
• Data dependence
• Dependencies can be carried over between loop iterations

• Important flavors of data dependencies
FLOW ANTI
s1: a = 40 b = 40

b = 21 s1: a = b + 1
s2: c = a + 2 s2: b = 21

9

Interlude: Loop-carried Dependencies

• Dependencies may occur across loop iterations
• Then they are called “loop-carried dependencies”
• “Distance” of a dependency: number of loop iterations the dependency spans

• The following code contains such a dependency:

• Some iterations of the loop have to complete before the next
iteration can run

• Simple trick: Can you reverse the loop w/o getting wrong results?
• Note: This condition is sufficient, but not necessary!

10

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
for (int i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];
} } Loop-carried dependency for a[i]

and a[i+17]; distance is 17.

Interlude: Loop-carried Dependencies

• Can we parallelize or vectorize the loop?

• Parallelization: no
(except for very specific loop schedules)

• Vectorization: yes
(iff vector length is shorter than any distance of any dependency)

11

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
for (int i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];
} }

Why Auto-vectorizers Fail

• Data dependencies
• Other potential reasons

• Alignment
• Function calls in loop block
• Complex control flow / conditional branches
• Loop not “countable”

• E.g. upper bound not a runtime constant
• Mixed data types
• Non-unit stride between elements
• Loop body too complex (register pressure)
• Vectorization seems inefficient

• Many more … but less likely to occur

12

Example: Loop not Countable

• “Loop not Countable” plus “Assumed Dependencies”

13

typedef struct {
float* data;
int size;

} vec_t;

void vec_eltwise_product(vec_t* a, vec_t* b, vec_t* c) {
for (int i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];
}

}

OpenMP SIMD Loop Construct

• Vectorize a loop nest
• Cut loop into chunks that fit a SIMD vector register
• No parallelization of the loop body

• Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]
for-loops

• Syntax (Fortran)
!$omp simd [clause[[,] clause],…]
do-loops

14

Example

15

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp simd reduction(+:sum)
for (int k=0; k<n; k++)

sum += a[k] * b[k];
return sum;

}

vectorize

Data Sharing Clauses

• private(var-list):
Uninitialized vectors for variables in var-list

• firstprivate(var-list):
Initialized vectors for variables in var-list

• reduction(op:var-list):
Create private variables for var-list and apply reduction operator op at the end of the construct

16

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17

SIMD Loop Clauses

• safelen (length)

• Maximum number of iterations that can run concurrently without breaking a
dependence

• In practice, maximum vector length
• linear (list[:linear-step])

• The variable’s value is in relationship with the iteration number
• xi = xorig + i * linear-step

• aligned (list[:alignment])

• Specifies that the list items have a given alignment
• Default is alignment for the architecture

• collapse (n)

17

SIMD Worksharing Construct

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team
• Subdivide loop chunks to fit a SIMD vector register

• Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…]
for-loops

• Syntax (Fortran)
!$omp do simd [clause[[,] clause],…]
do-loops
[!$omp end do simd [nowait]]

18

Example

19

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum)
for (int k=0; k<n; k++)

sum += a[k] * b[k];
return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

Remainder Loop Peel Loop

Be Careful What You Wish For…

• You should choose chunk sizes that are multiples of the SIMD length
• Remainder loops are not triggered
• Likely better performance

• In the above example …
• and AVX2 (= 8-wide), the code will only execute the remainder loop!
• and SSE (=4-wide), the code will have one iteration in the SIMD loop plus one in the remainder loop!

20

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \
schedule(static, 5)

for (int k=0; k<n; k++)
sum += a[k] * b[k];

return sum;
}

OpenMP 4.5 SIMD Chunks

• Chooses chunk sizes that are multiples of the SIMD length
• First and last chunk may be slightly different to fix alignment and to handle loops that are not exact

multiples of SIMD width
• Remainder loops are not triggered
• Likely better performance

21

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \
schedule(simd: static, 5)

for (int k=0; k<n; k++)
sum += a[k] * b[k];

return sum;
}

SIMD Function Vectorization

22

float min(float a, float b) {
return a < b ? a : b;

}

float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {
#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

• Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

• Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

• Syntax (Fortran):
!$omp declare simd (proc-name-list)

23

#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

#pragma omp declare simd
float distsq(float x, float y) {

return (x - y) * (x - y);
}

void example() {
#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

24

_ZGVZN16vv_min(%zmm0, %zmm1):
vminps %zmm1, %zmm0, %zmm0
ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):
vsubps %zmm0, %zmm1, %zmm2
vmulps %zmm2, %zmm2, %zmm0
ret

vmovups (%r14,%r12,4), %zmm0
vmovups (%r13,%r12,4), %zmm1
call _ZGVZN16vv_distsq
vmovups (%rbx,%r12,4), %zmm1
call _ZGVZN16vv_min

AT&T syntax: destination operand is on the right

SIMD Function Vectorization

• simdlen (length)
• generate function to support a given vector length

• uniform (argument-list)
• argument has a constant value between the iterations of a given loop

• inbranch
• optimize for function always called from inside an if statement

• notinbranch
• function never called from inside an if statement

• linear (argument-list[:linear-step])
• aligned (argument-list[:alignment])

25

SIMD Constructs & Performance

26

Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

3,66x

2,04x 2,13x

4,34x

1,47x

2,40x

0,00x

0,50x

1,00x

1,50x

2,00x

2,50x

3,00x

3,50x

4,00x

4,50x

5,00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

re
la

tiv
e

sp
ee

d-
up

(h
ig

he
r i

s b
et

te
r)

ICC auto-vec
ICC SIMD directive

Visit www.openmp.org

27

Summary

• OpenMP provided a powerful, expressive tasking model

• NUMA-aware programming is essential for performance

• OpenMP supports data-parallel instructions through the semi-
automatic SIMD features

• Connect with us to share feedback, comments, concerns, propose
features, or just hang around and have fun

28

Updated Slides

29

http://bit.ly/201809tutorial

	00_ompukug_MK_intro
	Advanced �OpenMP® Tutorial
	Credits, Credits, Credits
	Agenda�
	Updated Slides
	What is “Advanced OpenMP”?
	What is “Advanced OpenMP”?�
	Recent OpenMP Features�
	Lock/critical/atomic hints�What?
	Lock/critical/atomic hints�Why?
	Experiment details
	New dynamic scheduling option
	Agenda�

	01_ompukug_XT_tasking
	OpenMP Tasking
	OpenMP Tasking
	What is tasking?�First: What is “Classic” OpenMP?
	What is tasking?�Task model
	Problems with traditional worksharing
	Ragged Fork/Join�
	Introduction by Example: Sudoku�
	Why Do We Need Tasks?
	The OpenMP Task Construct�
	Barrier and Taskwait Constructs�
	Parallel Brute-force Sudoku�
	Parallel Brute-force Sudoku (2/3)�
	Parallel Brute-force Sudoku (3/3)�
	Performance Evaluation�
	Performance Analysis�
	Performance Evaluation�
	Task Data Scoping�
	Data Scoping Example
	Use default(none)!
	Scheduling
	Unsafe use of untied Tasks�
	if Clause�
	The taskyield Directive�
	taskyield Example (1/2)�
	priority Clause�
	final Clause�
	mergeable Clause�
	The taskgroup Construct�
	Task Dependencies: Motivation
	Controlling when a task starts
	The depend Clause�
	Example: Cholesky factorization�
	Example: Cholesky factorization�
	The taskloop Construct�
	Clauses for taskloop Construct�
	Example: Sparse CG�
	Example: Sparse CG�
	Conclusions
	Slide Number 39
	Performance Analysis�

	02_ompukug_XM_numa
	NUMA Awareness
	OpenMP and Performance
	Non-uniform Memory
	Non-uniform Memory
	First Touch Memory Placement
	Serial vs. Parallel Initialization
	Get Information about the System Topology
	Decide for Binding Strategy
	OpenMP 4.0: Places + Policies
	OMP_PLACES Environment Variable
	OpenMP 4.0: Places and Binding Policies
	More Examples (1/3)
	More Examples (2/3)
	More Examples (3/3)
	Looking at the execution: top
	Looking at the execution
	Places API: Example
	Retrieving information from OpenMP
	A First Summary
	NUMA Strategies: Overview
	User Control of Memory Affinity
	OpenMP Memory Allocators (v5.0)
	Example: Using Memory Allocators (v5.0)
	OpenMP Task Affinity (v5.0)
	OpenMP Task Affinity
	OpenMP Task Affinity
	Partitioning Memory w/ OpenMP version 5.0
	Summary

	03_ompukug_MK_vectorization
	OpenMP SIMD Programming
	Evolution of SIMD on Intel® Architectures
	SIMD Instructions –Arithmetic Instructions
	SIMD Instructions – Fused Instructions
	SIMD Instructions – Conditional Evaluation
	SIMD Instructions – Broadcast
	SIMD Instructions – Shuffles, Swizzles, Blends
	Auto-vectorization
	Interlude: Data Dependencies
	Interlude: Loop-carried Dependencies
	Interlude: Loop-carried Dependencies
	Why Auto-vectorizers Fail
	Example: Loop not Countable
	OpenMP SIMD Loop Construct
	Example
	Data Sharing Clauses
	SIMD Loop Clauses
	SIMD Worksharing Construct
	Example
	Be Careful What You Wish For…�
	OpenMP 4.5 SIMD Chunks�
	SIMD Function Vectorization
	SIMD Function Vectorization
	SIMD Function Vectorization
	SIMD Function Vectorization
	SIMD Constructs & Performance
	Visit www.openmp.org
	Summary
	Updated Slides

