
www.bsc.es

Xubin Tan

OpenMPCon 2018

Advisors: Carlos Álvarez, Daniel Jiménez-González

Hardware Hetergeneous Task Scheduling
for Task-based Programming Models

Agenda

2

> Background, Motivation

> Picos++ accelerated hardware runtime

> Hardware Heterogeneous task scheduling

> Results

Agenda

3

> Background, Motivation

> Picos++ accelerated hardware runtime

> Hardware Heterogeneous task scheduling

> Results

Moore’s Law – Commodity Microprocessor

4

Single-core processors Multicore era

Multi-core, many-core, heterogeneous architectures

void multisort (long n, T data[n], T tmp[n]) {

if(n<CUTOFF){sequential_sort();}

else{
 multisort(n/4, &data[0], &tmp[0]);
 multisort(n/4, &data[n/4], &tmp[n/4]);
 multisort(n/4, &data[n/2], &tmp[n/2]);
 multisort(n/4, &data[3n/4], tmp[3n/4]);

 merge(n/4, &data[0], &data[n/4], &tmp[0]);
 merge(n/4, &data[n/2], &data[3n/4], &tmp[n/2]);

 merge(n/2, &tmp[0], &tmp[n/2], &data[0]);
 }}

5

With task-based programming models
(OpenMP, OmpSs, Codelet, StarPU,
…, etc), an application can be
expressed as a collection of tasks with
dependences

Merge
6

Merge
7

Multisort
1

Multisort
2

Multisort
3

Multisort
4

Merge
5

Sequential execution: 7 steps
Parallel execution: 3 steps

Task-based programming models

 void multisort (size_t n, T data[n], T tmp[n]) {

 #pragma omp task inout(data[0], tmp[0])
 multisort(i, &data[0], &tmp[0]);

 ...
 #pragma omp task in(data[0], data[i]) out(tmp[0])

 merge(i, &data[0], &data[i], &tmp[0]);
 ...
 }

manages task creation, constructs task dependence

 graph, and schedules ready tasks dynamically

generates runtime calls to create tasks (task descriptor)

6

OmpSs programming model and its runtime

Runtime
(Nanos++)

Programmer

Compiler
(Mercurium)

7

Four OmpSs applications with problem
size 2K*2K, with 12 cores

SW runtime for exploiting fine-grained task parallelism

Smaller tasks, more tasks, more parallelism

8

Use hardware to accelerate SW runtime

Finer tasks, more tasks, more parallelism

Four OmpSs applications with problem
size 2K*2K, with 12 cores

Costly task-dependence analysis and heterogeneous task scheduling

9

New task Ready task Finish task

SW-only runtime overheads

Agenda

10

> Background, Motivation

> Picos++ accelerated hardware runtime

> Hardware Heterogeneous task scheduling

> Results

12

Picos++ System

 Picos++, several HwAccs @ different frequency

Two
types
of data
comm.

SMPs

Agenda

13

> Background, Motivation

> Picos++ accelerated hardware runtime

> Hardware Heterogeneous task scheduling

> Results

Two main issues concerning scheduling:

A. Load imbalance

 Scheduling task to a suitable hardware device with the least number of waiting tasks

 B. Hardware to hardware communication

 Picos++ directly manages task scheduling to different HW units

Related work:
 A. Static algorithms
 Heterogeneous Earlist Finish Time (HEFT), Crtitical-Path-on-a-Processor (CPOP), etc

 B. Dynamic algorithms
 Cricality-aware task scheduler (CATS), Critical-path scheduler (CPATH), Version Scheduler from
Judit Planas, etc

 C. Scheduling hierarchies
 Intel CARBON, Asychronous Direct Messages (ADM), Task Scheduling Unit, Programmable Task
Management Unit (TMU), etc

14

Heterogeneous Task Scheduling

15

Picos++ System

 Picos++, several HwAccs @ different frequency

Two
types
of data
comm.

SMPs

> Ready tasks come from Picos or Bypass

> Hardware Registers for each device to keep information

> Device selection based on:
 - Target device of the task
 - Hardware Register information about the number of pending tasks for each
 device
 - HW accelerator priority

16

Heterogeneous Task Scheduling

Agenda

17

> Background, Motivation

> Picos++ accelerated hardware runtime

> Hardware Heterogeneous task scheduling

> Results

Picos++

Other Hardware
Types

Threads

...

New task

Ready task
Finished task

Rea
dy

 ta
sk

Fin
ish

ed
 ta

sk

Ready task
Finished task

Rea
dy

 ta
sk

Fini
sh

ed
 ta

sk

Hardware Functional
Accelerator

0

Experimental Setup
A Xilinx Ultrascale+ MPSoC:

● 4 ARM cores@ 1.1GHz, and a
FPGA

● HW registers for power
samples

● OmpSs up running in Linux
16.04

The SW-only runtime@1.1GHz is supported by OmpSs @ FPGA,
Picos++ @ 100 or 200MHz

18

Hardware Functional
Accelerator

 N-1

19

An example code of gemm function for Cholesky
#pragma omp target device(fpga) copy_deps onto(0) num_instances(4)
#pragma omp task inout([bs]C) in([bs]A, [bs]B)

void matmulBlock(T (*A)[bs], T (*B)[bs], T (*C)[bs]){
unsigned int i, j, k;

#pragma HLS array_partition variable=A block factor=bs/2 dim=2
#pragma HLS array_partition variable=B block factor=bs/2 dim=1
 for (i = 0; i < bs; i++) {
 for (j = 0; j < bs; j++) {
#pragma HLS pipeline II=1
 T sum = 0;
 for (k = 0; k < bs; k++) {
 sum += A[i][k] * B[k][j];
 }
 C[i][j] += sum;
 }}}

#pragma omp target device(smp) no_copy_deps implements(matmulBlock)
#pragma omp task in([bs]A, [bs]B) inout([bs]C)

void matmulBlockSmp(T (*A)[bs], T (*B)[bs], T (*C)[bs]){
 T const alpha = 1.0; T const beta = 1.0;
 cblas_gemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 bs, bsize, bs, alpha, a, bs, b, bs, beta, c, bs);
}

OmpSs@FPGA | Compilation
process

(fpgacc, fpgacxx)

Native
compiler

autoVivado

FPGA
specific
vendor
tools

Linker

20

4963

496

496

32

GEMM
HwAcc0

SYRK
HwAcc1

POTRF
HwAcc3

21

Picos++
Scheduler

SMP threads

TRSM
HwAcc2

The number of tasks executed in this hardware device

Task scheduling using 4 different HwAccs-only

Vs Seq execution in SMP:
 1.7x speedup,
 0% energy savings
Vs SW-only runtime with similar HW
 1.1x speedup
 18% energy savings

Cholesky 2K, 64

SMP is only used for task
creation, not for execution

22

2667

496

496

32

GEMM
HwAcc0

SYRK
HwAcc1

POTRF
HwAcc3

SMP threads

TRSM
HwAcc2

2344

Picos++ schedules nearly half of GEMM tasks to SMP

Task scheduling using 4 different HwAccs+SMP

Vs Seq execution in SMP:
 3x speedup,
 42% energy savings
Vs SW-only runtime with similar HW
 1.95x speedup
 53% energy savings

Picos++
Scheduler

Cholesky 2K, 64

GEMM
HwAcc0

GEMM
HwAcc1

GEMM
HwAcc2

GEMM
HwAcc3

1209

12351258

1258

1024

23

Picos++
Scheduler

SMP threads

Task scheduling using 4 same HwAccs+SMP

Use HwAccs only for GEMM task execution, further balance the workloads
HwAcc3 has the highest priority, SMP has the lowest

Vs Seq execution in SMP:
 6.5x speedup,
 73% energy savings
Vs SW-only runtime with similar HW
 1.36x speedup
 33% energy savings

Cholesky 2K, 64

Matmul Cholesky Multisort

28

With 4 threads
Picos++ vs Seq: up to 3.4x speedup, 65% energy saving

 vs SW-only: up to 1.6x speedup, 40% energy saving

1.6x

3.4x

Performance Impact of the Task Granularity

29

Matmul:
Vs seq: 11.2x, 70% of energy savings
Vs SW-only: 2.7x, 65% of energy savings

5.9x

Multisort:
Vs seq: 5.9x, 85% of energy savings
Vs SW-only: 2.7x, 69% of energy
savings

2.7x

11.2x

2.7x

Performance Impact of the Heterogeneous Task
Management

with SMP+4 HwAccs*

1 2 4 6 8 10 12
0

5

10

15

20

#HwAccs
1 2 4 6 8 10 12

0

5

10

15

20

#HwAccs

S
p

e
e

du
p

 (
x)

30

Scaling Up the Number of HwAccs

16x

Picos++ vs SW-only (12a), seq creation Picos++ vs SW-only (12a), par creation

Matmul (2k, 32) with Picos++ at 100 or 200 MHz

8.7x

10x 11.2x

31

Paraver Trace of Matmul(2K, 32) with 12 HwAccs

Picos++
runtime

SW-only
runtime

By using Picos++ runtime, the cost of FPGA
task management is significantly smaller

32

Task Instances

Picos API Activities

main

omp_potrf

omp_syrk

omp_trsm

Paraver Trace of Cholesky@SMP+4GEMM Accs

33
Clock stopping, frequency scaling, sleep/wake-up

Potential Time Saving During Cholesky Execution

SW-only, 3Accs Picos++, 3Accs
0

5

10

15

20

25

30

35

40

45

50

GFLOPS: Picos++ with HPC

 Matmul (2K, 128), Picos++@100MHz, HwAccs @ 300MHz

34

39.6

G
f
o
p
/s

49 Gfop/s
16x vs Seq

With more resources, Picos++ gains more GFLOPS

Up to 49 GFLOPS, 24% faster than SW-only

5.74 watts average power consumption

FPGA-only 1 SMP 2 SMP 3 SMP 4 SMP

 Matmul (2K, 128), Picos++ @ 100MHz, HwAccs @ 300MHz

35

Name Gflops per watt Num.Threads, Frequency

Intel(R) Core(TM)
i5-3470

0.51 4t, 3GHz

Intel(R) Xeon(R) CPU E5-
2020 V2

4.14 24t, 2.1GHz

Intel(R) Core(TM) i7-4600U
CPU

4.75 4t, 2.1GHz

Picos++ with 3
blocksize 128 Accs

8.53 4t, 1.1GHz

GFLOPS: Picos++ with HPC

36

Conclusion

➢Fine-grained parallelism offers a lot of opportunities for desirable performance
at a low energy cost

➢HW task-dependence manager and heterogeneous task scheduler are fast,
energy efficient, and general purpose

➢The more hardware resources, the greater the impact of Picos hardware

➢Picos++ is compatible for task-based programming model runtimes as gomp for
OpenMP

Jaume Bosch, Xubin Tan, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel Jiménez-González, Carlos
Álvarez, Xavier Martorell, Eduard Ayguadé, Jesus Labarta. “Application Acceleration on FPGAs with OmPss@FPGA” in
FPT 2018.

Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard Ayguadé, Mateo Valero. “General Purpose
Task-Dependence Management Hardware for Task-based Dataflow Programming Models” in IPDPS’17.

Jaume Bosch, Xubin Tan, Carlos Álvarez, Daniel Jiménez-González, Eduard Ayguadé, Mateo Valero. “Characterizing and
Improving the Performance of Many-Core Task-Based Parallel Programming Runtimes” in IPDPS Workshop IPDRM’17.

Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard Ayguadé, Mateo Valero. “Performance
Analysis of a Hardware Accelerator of Dependence Management for Task-based Dataflow Programming models” in IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS’16).

38

Publication List

mailto:Cholesky@SMP

39

Acknowledgement

This work has been financially supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493),
by the Spanish Ministry of Science and Technology through TIN2015-65316-P
project,
by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-
1272), by the European Research
Council RoMoL Grant Agreement number 321253 and by the OmpSs on
Android and Hardware support for runtime Project
Cooperation Agreement with LG Electronics.
We also thank the Xilinx University Program for its hardware and software
donations

www.bsc.es

Xubin Tan

OpenMPCon 2018

Advisors: Carlos Álvarez, Daniel Jiménez-González

Hardware Hetergeneous Task Scheduling
for Task-based Programming Models

mailto:Picos++@100MHz

HW and Power cost in a Xilinx Ultrascale+ MPSoC

Backup Slides

Task size in Ultrascale+ executions

Backup Slides

Task size in Ultrascale+ executions

Backup Slides

