Enhancing Support in OpenMP to Improve Data
Locality in Application Programs Using Task
Scheduling

Martin Kong and Vivek Kale

September 25, 2018

Presenter: Lingda Li

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 1/26

Data Locality for OpenMP Tasking

Motivation

® In an OpenMP application in which work is scheduled to threads
dynamically, data locality is important for efficient execution of
the application.

m Using the clause affinity for task scheduling proposed for
OpenMP 5.0 can improve data locality [7].

m However, strategies for tasking are fixed by OpenMP’s runtime
system, even with hints to the affinity clause.

m One can argue that this small set of strategies isn’t beneficial for
all application-architecture pairs [1, 5].

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 2/26

Data Locality for OpenMP Tasking

A Possible Solution

m OpenMP needs an adequate amount of support to maintain high
levels of data locality when scheduling tasks to threads.
m Specifically, we need task-to-thread affinity in OpenMP to reduce
capacity cache misses on a multi-core node, or locality-awareness,
and
coherence cache misses on a multi-core node, or locality-sensitivity.
m We need to provide more hints to OpenMP’s runtime for assigning
OpenMP’s tasks to threads in a way that preserves data locality.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 3/26

Data Locality for OpenMP Tasking

Contribution

m Our solution builds on the affinity clause for OpenMP 5.0 [2]
— the user provides input to the clause as hints on

what data needs to be localized
the degree to which the data should be localized
m Prior work on the degree to which the data should be localized
has been shown to improve performance [3].

m Contribution: the addition of constructs to OpenMP that provides
and allow for a rich set of task scheduling schemes having (a)
locality-awareness or (b) locality-sensitivity.

m This work develops ideas of (a) for the affinity clause, and
building on (b) from previous work for the affinity clause.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 4/26

Data Scheduling

Scheduling Data Access

m OpenMP lacks a mechanism for allowing the thread identifier to
affect the scheduling of inner loops (when this is legal)

m Here we show two examples of how such mechanism can be used

m Benefits: Improve execution time, energy consumption and make
better usage of available bandwidth

m We show the results of some preliminary experiments conducted
to show the benefits of the proposed directive

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 5/26

Data Scheduling

Proposal

m Add loopshift directive
m Must be nested within a work-sharing directive and parallel region

m Allow to map iterator of some inner loop of the work-sharing loop with some
arithmetic expression

m Can use pre-defined variables such as thread identifier (tid) and number of
threads (numthreads)

#pragma omp parallel for

for (1 = 1lbi; i < ubi; i++)

{
int 3;
pragma omp loopshift(j = (i + tid) % numthreads)
for (j = 1bj; J < ubj; j++)

7 {

w

&

9 }

Listing 1: OpenMP LoopShift Directive

Presenter: Lingda Li Locality for OpenMP Tasking September

Data Scheduling

Example: Matrix-Multiply Loop Shift

m First example: Matrix-Multiply

m Shift loop-K w.r.t outer parallel and worksharing loop-i

m Effect: Each thread accesses a different part of array B

m Example shows the semantics of loopshift in terms of a more explicit worksharing loop
m Perform explicit partition of rows of B according to value of cc (core/thread)

m Could potentially use a renaming mechanism

#pragma omp parallel #pragma omp parallel
211 2|1
#pragma omp for private (i, J,kk) #pragma omp for private (i, j,kk)
4 for (cc = 0; cc < CORES; cc++) { 4 for (cc = 0; cc < CORES; cc++) {
int 1b = (ni/CORES) =* cc; int 1b = (ni/CORES) * cc;
6 int ub = (ni/CORES) * (cc + 1); 6 int ub = (ni/CORES) * (cc + 1);
for (i = 1lb; 1 < ub; i++) for (1 = 1lb; i < ub; i++)
8 for (kk = 0; kk < nk; kk++) | 8 for (kk = 0; kk < nk; kk++) {
int k = (kk + ccxni/CORES) % nk; #pragma omp loopshift \
10 for (3 = 0; J < nj; j++) 10 (k = (kk+cc*ni/CORES) %nk)
Cli] (3] += A[i)[k] = B[k][J]; for (j = 0; J < nj; Jj++)
12 } 12 Cli][3] += A[i)[k] =« Blk][3];
} }
141} 14 }
}

Listing 2:

Semantics

MatMul Loop Shift

Listing 3: MatMul LoopShift Directive

Data Scheduling

Example: Jacobi 2D Stencil Loop Shift

m Second example: Jacobi-2D
m Shift loop-i w.r.t to thread number

m Effect: Ideally, user-provided mapping function should attempt to reuse the data
already brought into cache by the thread

t < TSTEPS; t++) {

w

&

N

11

13

15

for

(t = 0;

#pragma omp parallel
{
int ii;
#pragma omp for private (J)
for (ii = 1; ii < n-1; ii++) {
int tid = omp_get_thread_num ();
int 1 =) % (n-2) + 1;
for (J =1; J -
ref (B,1i,J) =
ref (A, i, 3) £(A,i-1,9) +
ref (A, i+1,3) + ref(A,i,j-1) +
ref (A, i,3+1));
}
}

pointer swap
temp = B; B = A; A = temp;

}

Listing 4: Jacobi Stencil LoopShift
Semantics

Lingda Li

[

for

(t =

0; t < TSTEPS; t++) |

#pragma omp parallel
{

#pragma omp for private (j) \
loopshift (i=(tid+ii)% (n-2)+1)

for (int ii = 1; 1ii < n-1; ii++) {
for (j = 1; j < n-1; j++)
ref(B,i,3) = 0.2 = (
ref(A,i,3j) + ref(a,i-1,3) +

ref (A,i+1,3) + ref(A,i,3-1) +
ref (A,i,3+1));

}

}

- a;

temp = B; B A = temp;

}

Listing 5: Jacobi Stencil LoopShift

Directive

September 2!

Data Scheduling

Preliminary Experiments

Performed some preliminary experiments on Intel Core i9-7900X (10 core)
Used Clang v7.0 (Ilvm/trunk)

Experiments show that the loopshift directive can be used to reduce execution
time, improve bandwidth usage and/or reduce energy consumption

We evaluate the kernels previously shown (matmul and jacobi-stencil 2D)
problem sizes (750% and 1000°)
the stencil iterates for 200 steps, we repeat the matmul kernel 10 times

Baseline versions assume static schedule

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018

Data Scheduling

Results: Execution Time

m Impact on execution time varies, in some cases we observe speedups, and in
others the runtime remains constant

m We didn’t observe slowdowns

m Need to perform a few more experiments

Execution Time

4
3
w
° 2
3
g 1
0
STANDARD LARGE
Problem Sizes
B gemm-base B gemm-shift j2d-base j2d-shift

er 25, 2018 10 / 26

Data Scheduling

Bandwidth and Data Volume

New directive allows multiple threads to better exploit bandwidth

Each threads can access disjoint memory regions

Common to observe higher data-volume movement, but observe no loss in performance
BW usage remains almost constant

Loopshift directive allows to affect memory traffic between L3 and DRAM

Have not observed effects between L1 and L2, nor L2 and L3

Require more experiments

Bandwidth Usage DRAM to L3 Cache Traffic Volume

100000 256

10000 "128

2 64

© 1000 < R
3

S 100 E 16

g 8

10 = 4

1 8 2

STANDARD LARGE 1

STANDARD LARGE
Problem Sizes Problem Size

Hgemm-base Mgemm-shift Mj2d-base M j2d-shift

Bgemm-base Mgemm-shift Mj2d-base M j2d-shift

Data Scheduling

Results: Energy Consumption

m Loopshift directive allows to reduce the energy consumption
m Small exploration shows energy reductions from 10% to almost 70%

m Does not compromise performance (from previous slides)

Energy Consumption (J) Energy Consumption Improvement

500 (Lower is better)

400
300
200
100

. o

STANDARD LARGE

Joules
Reduction %
e 90 9o
N R O o e

o

Benchmark Size gemm Benchmark 2
Hgemm-base Mgemm-shift j2d-base j2d-shift B STANDARD W LARGE

12 / 26

Data Scheduling

Additional Notes

m New directive can alleviate different performance factors such as: execution
time, bandwidth usage, memory traffic and energy consumption

m Directive, depending on application and code, can help emulate GPU SIMT
access.

m Also performed experiments with Pthreads: observed same behavior.
m Also tested OpenMP with GCC 7.2, Clang runtime much faster in many cases

m GCC’s OpenMP showed to be less sensitive to loopshifting (likely due to some
under-the-hood implementation)

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 13 /26

Locality-sensitivity in OpenMP

Need to Use Task-to-thread Assignment History

m Consider an OpenMP application code using a taskloop construct
with multiple outer iterations and that computation load balanced
across cores in a timestep.

m If task scheduled to core different than the one in the previous outer
iteration, application code retrieves data from cache of the other core,
causing a coherence cache miss — note that cost is high with more cores
such as Intel Xeon Phi 64-core node.

m Such performance degradation is non-trivial if the cost of moving the data
between the two cores exceeds the benefit of load balancing obtained from
migrating the data to another core.

m Application programmer can improve data locality much more than just
using the affinity clause may reduce such a cache miss in this case
through hints to OpenMP runtime about how task affinity should be
done.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 14 / 26

Locality-sensitivity in OpenMP

Proposal for Locality-sensitivity

We propose adding a new scheduling strategy clause, schedstrat, in
which one uses the following parameters within the clause to specify
how task scheduling ought to be done:

®m history (tid, mode): Specifies the mode, or methodology
(from a pre-specified set of methodologies) in which history is
used to select a task from the shared queue, given a thread ID. If
no mode is chosen, the task is chosen based on whether it ran on a
given thread ID in the previous outer iteration.

m randomizationFactor: Reduces coherence cache misses by
having an adjustable parameter for the probability, between 0.0
and 1.0, that a task is chosen according to history from the
previous outer iteration.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 16 / 26

Locality-sensitivity in OpenMP

Proposal for Handling Locality-sensitivity
Example illustrating Approach

m Consider the Barnes-Hut code below run on a node of a supercomputer
of four cores.

Process (void % arg)

{

3 register const int slice = (long) arg;
int tid = (long) arg;
5 int i;

#pragma omp taskloop affinity schedstrat (history(tid) :randomizationFactor) grainsize (4)
for (i=0; i<n; i++)
body[i]->ComputeForce (groot, gdiameter);

~

911

Listing 6: Barnes-Hut user code using proposed locality-sensitive
tasking

7 for OpenMP Tasking

Locality-sensitivity in OpenMP

Support by Runtime

m When each of the the four threads each pick up work from the
shared work queue, a thread first generates a random number
between 0.0 <=P <= 1.0. A user sets a threshold r.

m 1. If p > r, dequeue a task that ran on thread X. 2. If p <=7, choose a

random thread that’s not X and dequeue a task from that thread.

m If the number generated determines (1), the thread searches for
the first task in the queue which has run on that thread in the
previous invocation of the taskloop computation region.

m If the thread finds such a task, the thread dequeues and the
executes the task. If the thread doesn’t find such a task, the thread
will dequeue the task at the head of the queue.

— Options passed to the affinity scheduling clause tunes the degree to
which load balancing is done with respect to data locality.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 18 / 26

Locality-sensitivity in OpenMP

Implementation Guidelines

The implementation:

m needs to not create false sharing in misalignment of shared queue;

m should minimize time to search for a task in queue that match the
locality tag;

m should reduce synchronization overheads by supporting a and
tuning of parameter for number of queues;

m should use an efficient implementation of work stealing[1];

m shall ideally have an automatic determination of parameters of
the task scheduling strategy;

m should support history from previous outer iterations for
per-outer-iteration adjustment of parameters of task scheduling
strategy during runtime.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 19 / 26

Locality-sensitivity in OpenMP

Performance Expectations

m There will be fewer coherence cache misses and less capacity
cache misses with more memory bandwidth on the bus.

m Some benefits not addressed here but that can be addressed are:

1. The idea won't decrease synchronization overheads.

2. The prefetching engine still can’t be beneficial for constrained
dynamic task scheduling because of the randomized branch
involved in the strategy.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 20/ 26

Closing

Conclusions

. Need mechanism to enable locality-aware and data-oriented task and
thread scheduling in OpenMP 5.0

. Propose clause affinity and through using parameters and hints to
the clause; propose 1oopshift directive to affect inner worksharing
loops

. Propose new types of hints for locality-aware task scheduling’s clause
affinity that specify

m what data should be associated with a particular thread, or privatized

m the degree to which that data should be privatized.

. We believe that such support in OpenMP will improve performance of
many OpenMP application codes on current and future architectures.

. We'll take feedback to add the ideas to OpenMP version 5.1 or a version
of OpenMP immediately succeeding OpenMP version 5.1.

. Please email us questions and inquiries :-)

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 21/ 26

Closing

Acknowledgements

m This work was supported in part by funding Exascale Computing
Project under Grant Number 17-SC-20-SC.

m We thank input from Oscar Hernandez from Oak Ridge National
Laboratory for initial input of the ideas for locality in tasking and
formulating the ideas.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 22 /26

ng

Questions?

ber 25, 2018 23 /26

Closing

Contacting Authors

m Vivek Kale: vkale@isi.edu
m Martin Kong: mkong@bnl.gov
m Lingda Li: 11i@bnl.gov

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018

vkale@isi.edu
mkong@bnl.gov
lli@bnl.gov

Closing

Bibliography I

[1] R.D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. Journal of ACM, 46(5):720-748, 1999.

[2] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science & Engineering, 5(1),
January-March 1998.

[3] V.Kale and W. Gropp. Load Balancing for Regular Meshes on SMPs with MPI. In
Proceedings of the 17th European MPI Users” Group Meeting Conference on Recent
Advances in the Message Passing Interface, EuroMPI "10, pages 229-238, Stuttgart,
Germany, 2010. Springer-Verlag.

[4] V.Kale, S. Donfack, L. Grigori, and W. D. Gropp. Lightweight Scheduling for
Balancing the Tradeoff Between Load Balance and Locality. 2014.

[5] M. Kulkarni, P. Carribault, and K. Pingali. Scheduling Strategies for Optimistic
Parallel Execution of Irregular Programs. In ACM Symposium on Parallelism in
Algorithms and Architectures, Munich, Germany, Jun 2008.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 25 /26

Closing

Bibliography II

[6] S.L.Olivier, B. R. de Supinski, M. Schulz, and J. F. Prins. Characterizing and
Mitigating Work Time Inflation in Task Parallel Programs. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, SC "12, pages 65:1-65:12, Salt Lake City, UT, USA, 2012. IEEE Computer
Society Press. ISBN 978-1-4673-0804-5. URL
http://dl.acm.org/citation.cfm?i1d=2388996.2389085.

[7] C. Terboven, J. Hahnfeld, X. Teruel, S. Mateo, A. Duran, M. Klemm, S. L. Olivier,
and B. R. de Supinski. Approaches for task affinity in openmp. 9903, 7 2016. doi:
10.1007 /978-3-319-45550-1_8.

Presenter: Lingda Li Locality for OpenMP Tasking September 25, 2018 26 /26

http://dl.acm.org/citation.cfm?id=2388996.2389085

	Data Locality for OpenMP Tasking
	Data Scheduling
	Locality-sensitivity in OpenMP
	Closing

