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2 Exascale Computing Project

DOE’s Office of Science Computation User Facilities

• DOE is leader in open 
High-Performance 
Computing 

• Provide the world’s most 
powerful computational 
tools for open science

• Access is free to 
researchers who publish

• Boost US competitiveness

• Attract the best and 
brightest researchers

NERSC 
Cori is 30 PF

OLCF
Titan is 27 PF

ALCF
Theta is 11.7 PF
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CORAL System

 Roadmap to Exascale (ORNL)

Since clock-rate scaling ended in 2003, HPC 
performance has been achieved through increased 
parallelism.  Jaguar scaled to 300,000 CPU cores.

Titan and beyond deliver hierarchical parallelism with 
very powerful nodes.  MPI plus thread level parallelism 
through OpenMP or OpenACC plus vectors

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010 2012 2017 2021-
3

Frontier: 5-10x Summit
~40 MWSummit:  5-10x Titan

Hybrid GPU/CPU
10 MW



Exascale Systems Roadmap (NERSC)

NERSC recommends MPI+OpenMP for N8 and N9 systems for 
programming model continuity and performance portability



     Two Architecture Paths for 
     Today and Future Leadership Systems

Heterogeneous Systems (e.g. Titan, Summit)

• CPU(s) / GPU(s)

• Multiple CPUs and GPUs per node. 

• Small number of very powerful nodes

• Expect data movement issues to be much 
easier than previous systems – coherent 
shared memory within a node

• Multiple levels of memory – on package, 
DDR, and non-volatile 

Homogeneous (e.g. Sequoia/Mira/Theta/Cori)

• 10’s of thousands of nodes with millions of 
cores

• Homogeneous cores

• Multiple levels of memory – DDR, MCDRAM 
(e.g. cached or user-managed mode), SSD 
(Theta)  

Power concerns for large supercomputers are driving the largest systems to either 
Heterogeneous or Homogeneous (manycore) architectures



System Attributes NERSC OLCF ALCF NERSC ALCF OLCF

Name Edison Titan Mira Cori Theta Summit
System peak (PF) 2.57 27 10 Haswell: 2.81

KNL: 29.5
11.69 200

Peak Power (MW) 1.9 9 4.8 4.2 1.7 13.3

Total system 
memory

357 TB 710TB 768 TB Haswell: 298.5 TB 
DDR4    
KNL: 1.06 PB DDR4 + 
High Bandwidth 
Memory

1475 TB: 
843 DDR4 + 
70 MCDRAM +
562 SSD 

>2.4 PB:  
DDR4,
HBM2,
PB persistent, 
memory

Node performance 
(TF)

0.461 1.452 0.204 Haswell: 1.178
KNL: 3.046

2.66 >40

Node Processors Intel Ivy 
Bridge

AMD Opteron
NVIDIA K20x

64-bit
PowerPC
A2

Intel Haswell
Intel KNL

Intel KNL 2 POWER9 
6 NVIDIA Volta 
GPUs

System Size 
(nodes)

5,586
nodes

18,688
nodes

49,152 Haswell; 2,388 nodes
KNL: 9,688 nodes

4,392 nodes ~4600 nodes

System 
Interconnect

Aries Gemini 5D Torus Aries Aries Dual Rail EDR-IB

File System 7.6 PB
168 GB/s
Lustre

32 OB
1 TB/s
Lustre

26 PB
300 GB/s
GPFS

28 PB
>700 GB/s
Lustre

10 PB
744 GB/s
Lustre

120 PB
1 TB/s
GPFS
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Choice of Programming Models
• MPI was developed primarily for inter-address space (inter means between or among)

• OpenMP was developed for shared memory or intra-node, and now supports accelerators as 
well (intra means within)

• Hybrid Programming (MPI+X) is when we use a solution with different programming models 
for inter vs. intra-node parallelism

• Several solutions including
– Pure MPI
– MPI + Shared Memory (OpenMP)
– MPI + Accelerator programming 

• OpenMP 4.5 shared memory + offload, OpenACC, CUDA, etc
– MPI message passing + MPI shared memory
– PGAS: UPC/UPC++, Fortran 2008 coarrays, GA, OpenSHMEM, etc
– Runtime tasks  (Legion, HPX, HiHat (draft), etc)
– Other hybrid based on Kokkos, Raja, SYCL, C++17 (C++20 draft) 

NERSC data from 2015: 
When asked: If you use MPI + X,
what is X ?
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Why Hybrid MPI + OpenMP?
• Homogeneous and Heterogeneous systems have large core counts per node

– Cori: Xeon Phi (KNL) 68 cores, 4 hardware threads per core. Total of 272 threads per node
– Summit: Total 176 (SMT4) Power9 threads + 6 Volta GPUs per node 

• Application may run with MPI everywhere, but possibly not good performance
– Needs hybrid programming to manage threading, improve SIMD, accelerator programming

• Many applications will not fit into the node memory using Pure MPI (e.g. per core) 
because of the memory overhead for each MPI task

• Hybrid MPI/OpenMP is a recommended programming model to achieve scaling 
capability and code portability, new trend

• Incremental parallelism with OpenMP for cores and accelerators 
• Some applications have two levels of parallelism naturally
• Avoids extra communication overhead within the node
• Adds fine granularity (larger message sizes) and allows increased dynamic load 

balancing across MPI tasks
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Example of Hybrid MPI/OpenMP 
Program hybrid
 call MPI_INIT_THREAD (required, provided, ierr) 
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
  …  some computation and MPI communication
  call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL DO PRIVATE(i)
 !$OMP&                    SHARED(n)
    do i=1,n
        … computation
    enddo
  !$OMP END PARALLEL DO 
  …  some computation and MPI communication
 call MPI_FINALIZE (ierr)
 end
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Supported Levels of Thread Safety 
• Defined by MPI standard in the form of commitments a multithreaded application makes 

to the MPI implementation.  Not specific to hybrid MPI/OpenMP.

• Use MPI_INIT_THREAD (required, provided, ierr), as an alternative to MPI_INIT (ierr)
– IN: “required”, desired level of thread support (integer)
– OUT: “provided”, provided level of thread support (integer)
– Returned “provided” maybe lower than “required”

• Thread support levels:
– MPI_THREAD_SINGLE: Only one thread will execute
– MPI_THREAD_FUNNELED: Process may be multi-threaded, but only master thread will make 

MPI calls (all MPI calls are ’’funneled'' to master thread)
– MPI_THREAD_SERIALIZED: Process may be multi-threaded, multiple threads may make MPI 

calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all 
MPI calls are ’’serialized'')

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions
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Hybrid MPI+OpenMP Programming Styles

MPI MPI + OpenMP
Hybrid MPI + 

MPI-3 (Shared 
Memory)

OpenMP Only

No overlap of 
Communication 

and 
Multi-threading

Overlapping 
Communication 

with
Multi-threading 

Master only
(outside OpenMP) 

Single Thread 
call MPI

(inside OpenMP)

All threads call 
MPI

(inside OpenMP)

Offload to Accelerator(s) – (if available)

Material 
Not covered

MPI_THREAD_SINGLE MPI_THREAD_MULTIPLE MPI_THREAD_FUNNELED
MPI_THREAD_SERIALIZLEDOpenMP

Tasking
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Overlap MPI Communication and OpenMP Multi-threading 
• Is a good strategy for improving performance 

– Use MPI inside parallel region with thread-safe MPI
• Need at least MPI_THREAD_FUNNELED
• Many “easy” hybrid programs only need MPI_THREAD_FUNNELED

– Simplest and least error-prone way is to use MPI outside parallel region, and allow 
only master thread to communicate between MPI tasks

– While this single master is making MPI calls, other threads are computing
• Must be able to separate codes that can run before or after ghost zone or halo 

info is received. Can be very hard conceptually
• May lose compiler optimizations such as vectorization

 !$OMP PARALLEL
     if (my_thread_rank < 1) then   
         call MPI_xxx(…)
     else
         do some computation
     endif
 !$OMP END PARALLEL
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Overlap MPI Communication and OpenMP Taskiing 

• Is a good strategy for improving 
performance with hosts or accelerators
– Use MPI inside task region with 

thread-safe MPI
• Need at least MPI_THREAD_MULTIPLE
• Use task dependencies to orchestrate 

communication, computation on the host 
or device

• Approach can be used to hide latencies 
of MPI, target regions and data 
movement to/from devices

• May be harder to understand the 
performance or where time is spent

• Can be used to pipeline
• Needs to spawn multiple threads 

On Device:
#pragma omp target nowait depend(..)
        do some computation on device
#pragma omp target update from(..) nowait depend(...)
        update results on host
#pragma omp task depend(...)
          call MPI_xxx(…)  
#pragma omp target update to(..) depend(..)
       update results on device

On Host: 
#pragma omp parallel single num_threads(N) 
{
#pragma omp task depend(..)
        do some computation on host
#pragma omp task depend(...)
           call MPI_xxx(…)
#pragma omp taskwait
 }     
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Best Practices for Hybrid MPI/OpenMP

• Use profiling tools to find hotspots. Add OpenMP and check correctness incrementally.

• Choose between OpenMP fine grain or coarse grain parallelism implementation.

• Pay attention to load imbalance. If needed, try dynamic scheduling or implement own 
load balance scheme

• Decide whether to overlap MPI communication with thread computation.

• Experiment with different combinations of MPI tasks and number of threads per task. 
Less MPI tasks may not saturate inter-node bandwidth.

• Be aware of NUMA domains. Test different process and thread affinity options.

• Leave some cores idle on purpose, for memory capacity or bandwidth capacity.
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MPI vs. OpenMP Scaling Analysis for Optimal Configuration

Low
er is B

etter

Courtesy of Chris Daley, NERSC

Find the sweet spot for hybrid MPI/OpenMP 

• Each line represents multiple 
runs using fixed total number 
of cores = #MPI tasks x 
#OpenMP threads/task

• Scaling may depend on the 
kernel algorithms and problem 
sizes

• In this test case, 15 MPI tasks 
with 8 OpenMP threads per 
task is optimal 
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OpenMP Thread Affinity
• Three main concepts:

Hardware
Abstraction

OpenMP 
Threads

Mapping 
Strategy

OMP_PLACES
Environment Variable
(e.g. threads, cores, 

sockets)

OMP_PROC_BIND
Environment Variable

Or
proc_bind() clause

of parallel region
(e.g. close, spread, master)

OMP_NUM_THREADS
Environment Variable

Or
num_threads() clause

of parallel region
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Considerations for OMP_PROC_BIND Choices

• Selecting the “right” binding is dependent on the architecture topology but also 
on the application characteristics

• Putting threads apart (e.g. different sockets): spread
– Can help to improve aggregated memory bandwidth

– Combine the cache sizes across cores

– May increase the overhead of synchronization across far apart threads

– Aggregates memory bandwidth to/from accelerator(s) 

• Putting threads near (e,g. hardware threads or cores sharing caches): master, 
close
– Good for synchronization and data reuse

– May decrease total memory bandwidth
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OMP_PROC_BIND Choices for STREAM

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to CPUs 
0,32,1,33,2,34,…15,47.  All 
threads are in the first socket.  
The second socket is idle.  Not 
optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to CPUs 
0,1,2,… to 31.  Both sockets 
and memory are used to 
maximize memory bandwidth.

Blue:  OMP_PROC_BIND=close
Red:   OMP_PROC_BIND=spread
Both with First Touch
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Memory Affinity: “First Touch” Memory

Red:  step 1.1 + step 2.  No First Touch
Blue: step 1.2 + step 2.  First Touch

  Step 1.1 Initialization             
  by master thread only 
  for (j=0; j<VectorSize; j++) { 
  a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

  Step 1.2 Initialization 
  by all threads
  #pragma omp parallel for 
  for (j=0; j<VectorSize; j++) { 
  a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

  Step 2 Compute
  #pragma omp parallel for
  for (j=0; j<VectorSize; j++) {
  a[j]=b[j]+d*c[j];}

Memory affinity is not defined when memory 
was allocated, instead it will be defined at 
initialization. 
Memory will be local to the thread which 
initializes it. This is called first touch policy. 

OMP_PROC_BIND=close
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“Perfect Touch” is Hard

• Hard to do “perfect touch” for real applications 

• General recommendation is to use number of threads equal to or fewer 
than number of CPUs per NUMA domain

• Previous example: 16 cores (32 CPUs) per NUMA domain                             
Sample run options:
– 2 MPI tasks, 1 MPI task per NUMA domain: 32 OpenMP threads (use hyperthreads) 

or 16 OpenMP threads (no hyperthreads) per MPI task 
– 4 MPI tasks, 2 MPI tasks per NUMA domain: 16 OpenMP threads (use hyperthreads) 

or 8 OpenMP threads (no hyperthreads) per MPI task
– 8 MPI tasks, and so on ...
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Process and Thread Affinity in Nested OpenMP
• A combination of OpenMP environment variables and runtime flags are needed for 

different compilers and different batch schedulers on different systems

• Use num_threads clause in source codes to set threads for nested regions 
• For most other non-nested regions, use OMP_NUM_THREADS environment 

variable for simplicity and flexibility

Example: Use Intel compiler with SLURM on Cori Haswell:
export OMP_NESTED=true
export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PROC_BIND=spread,close
export OMP_PLACES=threads
srun -n 4 -c 16 --cpu_bind=cores ./nested.intel.cori  

spread 

close 
Illustration of a system with:
2 sockets, 4 cores per socket, 
4 hyper-threads per core

#pragma omp parallel proc_bind(spread)
      #pragma omp parallel proc_bind(close) 

initial 
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MPI+OpenMP: From Titan To Summit

6
2
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OpenMP MPI+OpenMP affinity on Summit

A Summit node

6     NV100 GPUs 
2     Power9 CPU sockets
42   CPU Cores 
172 CPU Hardware threads 

Note: 1 core on each socket has been set aside for overhead and 
is not available for allocation through jsrun. The core has been 
omitted and is not shown in the above image.

* Diagram courtesy of OLCF
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Summit – MPI+OpenMP Affinity

• jsrun is used to launch MPI, MPI+OpenMP, OpenMP (only) applications

• jsrun utility controls MPI task placement and OpenMP places
• MPI+OpenMP affinity set by jsrun

– MPI task placement
– Sets OpenMP places ICV and OMP_PLACES environment variable
– Maps one OpenMP place per hardware thread.
– OpenMP thread binding is set by user using OMP_PROC_BIND or proc_bind() clause 

• mpirun is also available (not preferred)
• For more information on jsrun:

– https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/
 

https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/
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Summit - JSRUN – Resource Sets
• A resource set

– Controls how resources are managed within the node
– Can create one or more resource sets within a node
– Each resource sets contain 1 or more cores and 0 or more GPUs

• Understand how the application interacts with the system
– How many tasks/threads per GPU
– Does each task expect to see a single GPU? (or multiple GPUs)

• Create resource sets to specify:
– GPUs per resource set
– Cores per resource set
– MPI tasks per resource set

• Distribution 

• Decide the # of resource set needed in applications
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Example of resource sets on Summit

%setenv OMP_NUM_THREADS 4
%jsrun -n12 -a1 -c4 -g1 -b packed:4 -d packed ./a.out
Rank: 0; RankCore: 0; Thread: 0; ThreadCore: 0; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 1; ThreadCore: 4; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 2; ThreadCore: 8; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 3; ThreadCore: 12; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}

Rank: 1; RankCore: 16; Thread: 0; ThreadCore: 16; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 1; ThreadCore: 20; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 2; ThreadCore: 24; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 3; ThreadCore: 28; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}

...

Rank: 10; RankCore: 104; Thread: 0; ThreadCore: 104; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 1; ThreadCore: 108; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 2; ThreadCore: 112; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 3; ThreadCore: 116; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}

Rank: 11; RankCore: 120; Thread: 0; ThreadCore: 120; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 1; ThreadCore: 124; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 2; ThreadCore: 128; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 3; ThreadCore: 132; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}

* Example courtesy of OLCF



27 Exascale Computing Project

VASP: MPI/OpenMP Scaling Study

Courtesy of Zhengji Zhao,NERSC

• Original MPI parallelization 
– Over the bands (high level)
– Over Fourier coefficient of the bands (low level) 

• MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of 

bands, either by explicitly adding OpenMP 
directives or via using threaded FFTW and 
LAPACK/BLAS3 libraries

– No nested OpenMP
– SIMD vectorization is deployed extensively
– MPI/OpenMP scaling study to find the sweet 

spot
– Other tuning options
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PARSEC: Overlap Comp and Comm (1)
Original Force Pseudocode

do type
   do atom
      calc A & B
      reduceAll A & B to master
      calc ∆force = f(A&B) on master
      store force on master
   end atom
end type

➢ Preemptively create an array of 
comms, one for each atom, to allow 
mpi ranks without data to move to the 
next atom

➢ Atom loop is threaded, allowing 
multiple atoms to be solved 
simultaneously

➢ Use MPI_THREAD_MULTIPLE, 
multiple threads call MPI

Improved Version with 
MPI_THREAD_MULTIPLE

do type
   MPI_COMM_SPLIT(atom, rank_has_data)
   !$OMP DO
   do atom 
      if comm(atom) = MPI_COMM_NULL, cycle
      calc A & B
      reduceAll(comm(atom), A)
      calc ∆force = f(A&B)
      reduceAll(comm(atom), ∆force)
      store locally with master of comm(atom) 
   end atom
   !$OMP END DO
end type

Courtesy of Kevin Gott, NERSC
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PARSEC: Overlap Comp and Comm (2)

Courtesy of Kevin Gott, NERSC



HMMER3: Use OpenMP Task Directives
• Replace pthread implementation limited by performance of master thread

– OpenMP tasks facilitate overlap of I/O and Compute
– Forking of child tasks and task groups allow simple work stealing implementation

• Thread scaling result on 1 Edison node (24 cores of Intel Xeon Ivy Bridge)

• pthread HMMER3 Red
• OpenMP HMMER3 Green

• Dashed lines show 
theoretical peak (two lines 
because serial 
performance is also 
improved)

Courtesy of Willaim Arndt, NERSC



 HMMER3: Use task and taskgroup to Overlap I/O and Compute

Courtesy of William Arndt, NERSC

#pragma omp parallel {
#pragma omp single {

#pragma omp task { load_seq_buffer(); }
#pragma omp task { load_hmm_buffer(); }
#pragma omp taskwait
while( more HMMs ) {

#pragma omp task { write_output(); 
                   load_hmm_buffer(); }
while( more sequences ) {

#pragma omp taskgroup {
#pragma omp task { 
load_seq_buffer(); }
for ( each hmm in hmm_buffer )

#pragma omp task { 
task_kernel(); }

swap_I/O_and_working_seq_buffers()
;

}
}
#pragma omp taskwait
swap_I/O_and_working_hmm_buffers();

}
}

}
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MPI+OpenMP : Turbulence Mixing Application
• Direct numerical simulations of turbulence and turbulent mixing

– Pseudo-spectral for velocity, compact finite differences for scalar.

• Uses OpenMP to orchestrate the work among CPU cores, accelerator and network
– Accelerate scalar field computation - 5x improvement
– Use OpenMP tasks to hide network, GPU data transfer and computation latencies (14% improv.)
– OpenMP Target tuning is needed to achieve good performance

Target
Computation

VXZ(ivar)

Update Host
VXZ(ivar)

MPI_ALLTOALL
VXZ(ivar), 

VXY(ivar), ..

Update Target
VXY(ivar)

Target
Computation

VXY(ivar)

ivar = 1

ivar = 2

OpenMP tasks (target and threads) with dependencies

Using 8K nodes/GPUs

P.K Yeung, et al. 
INCITE

Processing Elements
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Overlap Communication and Computation
• MPI_THREAD_MULTIPLE: any thread can call MPI

• Can be used with OpenMP tasks to hide latencies, overheads, wait times, and 
to keep the interconnect busy etc.

• Profitable when using two or more OpenMP threads

 !$OMP PARALLEL DO NUM_THREADS(2 or more)
     do i=0, N
      !$OMP TARGET DEPEND(OUT:i) NOWAIT
            ! do some computation on device (e.g. dataXY(i))
      !$OMP TARGET UPDATE FROM(dataXY(i)) DEPEND(INOUT:i) NOWAIT
             ! update data on the host (e.g. dataXY(i))
      !$OMP TASK DEPEND(INOUT:i)
              call MPI_xxx(…) to exchange data (e.g. dataXY(i), dataYZ(i))
       $OMP TARGET UPDATE TO(dataYZ(i)) DEPEND(INOUT:i) NOWAIT
             ! update data on the device (e.g. dataYZ(i))
        !$OMP TARGET DEPEND(IN:i) NOWAIT
            ! do some computation on device on dataYZ(i)
        enddo
 !$OMP END PARALLEL DO
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MPI + OpenMP with GPU offload– Lessons Learned
• Matrix Multiplication: MPI for intranode communications and OpenMP to offload 

computation to GPUs
– Application developers must pay extreme attention on tuning or performance won’t be there.
– Compilers/runtimes need to help for performance portability across platforms.
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Summitdev:: Power8, NVIDIA GP100, NVLINK, IB EDR



35 Exascale Computing Project

• Task reductions
• Memory allocators
• Detachable tasks
• C++14 and C++17 support
• Fortran 2008 support
• Unified shared memory
• Loop construct
• Collapse non-rec loops
• Multi-level parallelism (*)
• Scan

Major features in OpenMP 5.0

• Task to data affinity
• Meta-directives
• Data serialization for offload
• Display affinity
• Reverse offload
• Dependence objects
• Improved task dependencies
• User-defined function variants
• OMPT/OMPD tools API

35
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MPI Current Proposals/Investigated Concepts for Threads

• Endpoints: let threads have their own MPI rank

• Finepoints: let threads contribute to MPI operations without having a rank per 
thread (thread-based buffer partitioning)

• MPI & task-based environment: provide a MPI_TASK_MULTIPLE mode that 
guarantee progress of tasks and communications

• MPI_COMM_TYPE_ADDRESS_SPACE: groups ranks that share an address 
space (can be used in conjunction of endpoints)

• MPI implementations (not a standard proposal): runtime coordination to optimally 
partition on-resources between MPI and OpenMP


