
Using MPI+OpenMP for current and future
architectures

•September 24th, 2018

OpenMPCon 2018 Oscar Hernandez
 Yun (Helen) He

Barbara Chapman

2 Exascale Computing Project

DOE’s Office of Science Computation User Facilities

• DOE is leader in open
High-Performance
Computing

• Provide the world’s most
powerful computational
tools for open science

• Access is free to
researchers who publish

• Boost US competitiveness

• Attract the best and
brightest researchers

NERSC
Cori is 30 PF

OLCF
Titan is 27 PF

ALCF
Theta is 11.7 PF

3 Exascale Computing Project

CORAL System

 Roadmap to Exascale (ORNL)

Since clock-rate scaling ended in 2003, HPC
performance has been achieved through increased
parallelism. Jaguar scaled to 300,000 CPU cores.

Titan and beyond deliver hierarchical parallelism with
very powerful nodes. MPI plus thread level parallelism
through OpenMP or OpenACC plus vectors

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010 2012 2017 2021-
3

Frontier: 5-10x Summit
~40 MWSummit: 5-10x Titan

Hybrid GPU/CPU
10 MW

Exascale Systems Roadmap (NERSC)

NERSC recommends MPI+OpenMP for N8 and N9 systems for
programming model continuity and performance portability

 Two Architecture Paths for
 Today and Future Leadership Systems

Heterogeneous Systems (e.g. Titan, Summit)

• CPU(s) / GPU(s)

• Multiple CPUs and GPUs per node.

• Small number of very powerful nodes

• Expect data movement issues to be much
easier than previous systems – coherent
shared memory within a node

• Multiple levels of memory – on package,
DDR, and non-volatile

Homogeneous (e.g. Sequoia/Mira/Theta/Cori)

• 10’s of thousands of nodes with millions of
cores

• Homogeneous cores

• Multiple levels of memory – DDR, MCDRAM
(e.g. cached or user-managed mode), SSD
(Theta)

Power concerns for large supercomputers are driving the largest systems to either
Heterogeneous or Homogeneous (manycore) architectures

System Attributes NERSC OLCF ALCF NERSC ALCF OLCF

Name Edison Titan Mira Cori Theta Summit
System peak (PF) 2.57 27 10 Haswell: 2.81

KNL: 29.5
11.69 200

Peak Power (MW) 1.9 9 4.8 4.2 1.7 13.3

Total system
memory

357 TB 710TB 768 TB Haswell: 298.5 TB
DDR4
KNL: 1.06 PB DDR4 +
High Bandwidth
Memory

1475 TB:
843 DDR4 +
70 MCDRAM +
562 SSD

>2.4 PB:
DDR4,
HBM2,
PB persistent,
memory

Node performance
(TF)

0.461 1.452 0.204 Haswell: 1.178
KNL: 3.046

2.66 >40

Node Processors Intel Ivy
Bridge

AMD Opteron
NVIDIA K20x

64-bit
PowerPC
A2

Intel Haswell
Intel KNL

Intel KNL 2 POWER9
6 NVIDIA Volta
GPUs

System Size
(nodes)

5,586
nodes

18,688
nodes

49,152 Haswell; 2,388 nodes
KNL: 9,688 nodes

4,392 nodes ~4600 nodes

System
Interconnect

Aries Gemini 5D Torus Aries Aries Dual Rail EDR-IB

File System 7.6 PB
168 GB/s
Lustre

32 OB
1 TB/s
Lustre

26 PB
300 GB/s
GPFS

28 PB
>700 GB/s
Lustre

10 PB
744 GB/s
Lustre

120 PB
1 TB/s
GPFS

7 Exascale Computing Project

Choice of Programming Models
• MPI was developed primarily for inter-address space (inter means between or among)

• OpenMP was developed for shared memory or intra-node, and now supports accelerators as
well (intra means within)

• Hybrid Programming (MPI+X) is when we use a solution with different programming models
for inter vs. intra-node parallelism

• Several solutions including
– Pure MPI
– MPI + Shared Memory (OpenMP)
– MPI + Accelerator programming

• OpenMP 4.5 shared memory + offload, OpenACC, CUDA, etc
– MPI message passing + MPI shared memory
– PGAS: UPC/UPC++, Fortran 2008 coarrays, GA, OpenSHMEM, etc
– Runtime tasks (Legion, HPX, HiHat (draft), etc)
– Other hybrid based on Kokkos, Raja, SYCL, C++17 (C++20 draft)

NERSC data from 2015:
When asked: If you use MPI + X,
what is X ?

8 Exascale Computing Project

Why Hybrid MPI + OpenMP?
• Homogeneous and Heterogeneous systems have large core counts per node

– Cori: Xeon Phi (KNL) 68 cores, 4 hardware threads per core. Total of 272 threads per node
– Summit: Total 176 (SMT4) Power9 threads + 6 Volta GPUs per node

• Application may run with MPI everywhere, but possibly not good performance
– Needs hybrid programming to manage threading, improve SIMD, accelerator programming

• Many applications will not fit into the node memory using Pure MPI (e.g. per core)
because of the memory overhead for each MPI task

• Hybrid MPI/OpenMP is a recommended programming model to achieve scaling
capability and code portability, new trend

• Incremental parallelism with OpenMP for cores and accelerators
• Some applications have two levels of parallelism naturally
• Avoids extra communication overhead within the node
• Adds fine granularity (larger message sizes) and allows increased dynamic load

balancing across MPI tasks

9 Exascale Computing Project

Example of Hybrid MPI/OpenMP
Program hybrid
 call MPI_INIT_THREAD (required, provided, ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL DO PRIVATE(i)
 !$OMP& SHARED(n)
 do i=1,n
 … computation
 enddo
 !$OMP END PARALLEL DO
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)
 end

10 Exascale Computing Project

Supported Levels of Thread Safety
• Defined by MPI standard in the form of commitments a multithreaded application makes

to the MPI implementation. Not specific to hybrid MPI/OpenMP.

• Use MPI_INIT_THREAD (required, provided, ierr), as an alternative to MPI_INIT (ierr)
– IN: “required”, desired level of thread support (integer)
– OUT: “provided”, provided level of thread support (integer)
– Returned “provided” maybe lower than “required”

• Thread support levels:
– MPI_THREAD_SINGLE: Only one thread will execute
– MPI_THREAD_FUNNELED: Process may be multi-threaded, but only master thread will make

MPI calls (all MPI calls are ’’funneled'' to master thread)
– MPI_THREAD_SERIALIZED: Process may be multi-threaded, multiple threads may make MPI

calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all
MPI calls are ’’serialized'')

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions

11 Exascale Computing Project

Hybrid MPI+OpenMP Programming Styles

MPI MPI + OpenMP
Hybrid MPI +

MPI-3 (Shared
Memory)

OpenMP Only

No overlap of
Communication

and
Multi-threading

Overlapping
Communication

with
Multi-threading

Master only
(outside OpenMP)

Single Thread
call MPI

(inside OpenMP)

All threads call
MPI

(inside OpenMP)

Offload to Accelerator(s) – (if available)

Material
Not covered

MPI_THREAD_SINGLE MPI_THREAD_MULTIPLE MPI_THREAD_FUNNELED
MPI_THREAD_SERIALIZLEDOpenMP

Tasking

12 Exascale Computing Project

Overlap MPI Communication and OpenMP Multi-threading
• Is a good strategy for improving performance

– Use MPI inside parallel region with thread-safe MPI
• Need at least MPI_THREAD_FUNNELED
• Many “easy” hybrid programs only need MPI_THREAD_FUNNELED

– Simplest and least error-prone way is to use MPI outside parallel region, and allow
only master thread to communicate between MPI tasks

– While this single master is making MPI calls, other threads are computing
• Must be able to separate codes that can run before or after ghost zone or halo

info is received. Can be very hard conceptually
• May lose compiler optimizations such as vectorization

 !$OMP PARALLEL
 if (my_thread_rank < 1) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

13 Exascale Computing Project

Overlap MPI Communication and OpenMP Taskiing

• Is a good strategy for improving
performance with hosts or accelerators
– Use MPI inside task region with

thread-safe MPI
• Need at least MPI_THREAD_MULTIPLE
• Use task dependencies to orchestrate

communication, computation on the host
or device

• Approach can be used to hide latencies
of MPI, target regions and data
movement to/from devices

• May be harder to understand the
performance or where time is spent

• Can be used to pipeline
• Needs to spawn multiple threads

On Device:
#pragma omp target nowait depend(..)
 do some computation on device
#pragma omp target update from(..) nowait depend(...)
 update results on host
#pragma omp task depend(...)
 call MPI_xxx(…)
#pragma omp target update to(..) depend(..)
 update results on device

On Host:
#pragma omp parallel single num_threads(N)
{
#pragma omp task depend(..)
 do some computation on host
#pragma omp task depend(...)
 call MPI_xxx(…)
#pragma omp taskwait
 }

14 Exascale Computing Project

Best Practices for Hybrid MPI/OpenMP

• Use profiling tools to find hotspots. Add OpenMP and check correctness incrementally.

• Choose between OpenMP fine grain or coarse grain parallelism implementation.

• Pay attention to load imbalance. If needed, try dynamic scheduling or implement own
load balance scheme

• Decide whether to overlap MPI communication with thread computation.

• Experiment with different combinations of MPI tasks and number of threads per task.
Less MPI tasks may not saturate inter-node bandwidth.

• Be aware of NUMA domains. Test different process and thread affinity options.

• Leave some cores idle on purpose, for memory capacity or bandwidth capacity.

15 Exascale Computing Project

MPI vs. OpenMP Scaling Analysis for Optimal Configuration

Low
er is B

etter

Courtesy of Chris Daley, NERSC

Find the sweet spot for hybrid MPI/OpenMP

• Each line represents multiple
runs using fixed total number
of cores = #MPI tasks x
#OpenMP threads/task

• Scaling may depend on the
kernel algorithms and problem
sizes

• In this test case, 15 MPI tasks
with 8 OpenMP threads per
task is optimal

16 Exascale Computing Project

OpenMP Thread Affinity
• Three main concepts:

Hardware
Abstraction

OpenMP
Threads

Mapping
Strategy

OMP_PLACES
Environment Variable
(e.g. threads, cores,

sockets)

OMP_PROC_BIND
Environment Variable

Or
proc_bind() clause

of parallel region
(e.g. close, spread, master)

OMP_NUM_THREADS
Environment Variable

Or
num_threads() clause

of parallel region

17 Exascale Computing Project

Considerations for OMP_PROC_BIND Choices

• Selecting the “right” binding is dependent on the architecture topology but also
on the application characteristics

• Putting threads apart (e.g. different sockets): spread
– Can help to improve aggregated memory bandwidth

– Combine the cache sizes across cores

– May increase the overhead of synchronization across far apart threads

– Aggregates memory bandwidth to/from accelerator(s)

• Putting threads near (e,g. hardware threads or cores sharing caches): master,
close
– Good for synchronization and data reuse

– May decrease total memory bandwidth

18 Exascale Computing Project

OMP_PROC_BIND Choices for STREAM

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to CPUs
0,32,1,33,2,34,…15,47. All
threads are in the first socket.
The second socket is idle. Not
optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to CPUs
0,1,2,… to 31. Both sockets
and memory are used to
maximize memory bandwidth.

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

19 Exascale Computing Project

Memory Affinity: “First Touch” Memory

Red: step 1.1 + step 2. No First Touch
Blue: step 1.2 + step 2. First Touch

 Step 1.1 Initialization
 by master thread only
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 1.2 Initialization
 by all threads
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 2 Compute
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];}

Memory affinity is not defined when memory
was allocated, instead it will be defined at
initialization.
Memory will be local to the thread which
initializes it. This is called first touch policy.

OMP_PROC_BIND=close

20 Exascale Computing Project

“Perfect Touch” is Hard

• Hard to do “perfect touch” for real applications

• General recommendation is to use number of threads equal to or fewer
than number of CPUs per NUMA domain

• Previous example: 16 cores (32 CPUs) per NUMA domain
Sample run options:
– 2 MPI tasks, 1 MPI task per NUMA domain: 32 OpenMP threads (use hyperthreads)

or 16 OpenMP threads (no hyperthreads) per MPI task
– 4 MPI tasks, 2 MPI tasks per NUMA domain: 16 OpenMP threads (use hyperthreads)

or 8 OpenMP threads (no hyperthreads) per MPI task
– 8 MPI tasks, and so on ...

21 Exascale Computing Project

Process and Thread Affinity in Nested OpenMP
• A combination of OpenMP environment variables and runtime flags are needed for

different compilers and different batch schedulers on different systems

• Use num_threads clause in source codes to set threads for nested regions
• For most other non-nested regions, use OMP_NUM_THREADS environment

variable for simplicity and flexibility

Example: Use Intel compiler with SLURM on Cori Haswell:
export OMP_NESTED=true
export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PROC_BIND=spread,close
export OMP_PLACES=threads
srun -n 4 -c 16 --cpu_bind=cores ./nested.intel.cori

spread

close
Illustration of a system with:
2 sockets, 4 cores per socket,
4 hyper-threads per core

#pragma omp parallel proc_bind(spread)
 #pragma omp parallel proc_bind(close)

initial

22 Exascale Computing Project

MPI+OpenMP: From Titan To Summit

6
2

23 Exascale Computing Project

OpenMP MPI+OpenMP affinity on Summit

A Summit node

6 NV100 GPUs
2 Power9 CPU sockets
42 CPU Cores
172 CPU Hardware threads

Note: 1 core on each socket has been set aside for overhead and
is not available for allocation through jsrun. The core has been
omitted and is not shown in the above image.

* Diagram courtesy of OLCF

24 Exascale Computing Project

Summit – MPI+OpenMP Affinity

• jsrun is used to launch MPI, MPI+OpenMP, OpenMP (only) applications

• jsrun utility controls MPI task placement and OpenMP places
• MPI+OpenMP affinity set by jsrun

– MPI task placement
– Sets OpenMP places ICV and OMP_PLACES environment variable
– Maps one OpenMP place per hardware thread.
– OpenMP thread binding is set by user using OMP_PROC_BIND or proc_bind() clause

• mpirun is also available (not preferred)
• For more information on jsrun:

– https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/

https://beta.olcf.ornl.gov/for-users/system-user-guides/summit/running-jobs/

25 Exascale Computing Project

Summit - JSRUN – Resource Sets
• A resource set

– Controls how resources are managed within the node
– Can create one or more resource sets within a node
– Each resource sets contain 1 or more cores and 0 or more GPUs

• Understand how the application interacts with the system
– How many tasks/threads per GPU
– Does each task expect to see a single GPU? (or multiple GPUs)

• Create resource sets to specify:
– GPUs per resource set
– Cores per resource set
– MPI tasks per resource set

• Distribution

• Decide the # of resource set needed in applications

26 Exascale Computing Project

Example of resource sets on Summit

%setenv OMP_NUM_THREADS 4
%jsrun -n12 -a1 -c4 -g1 -b packed:4 -d packed ./a.out
Rank: 0; RankCore: 0; Thread: 0; ThreadCore: 0; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 1; ThreadCore: 4; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 2; ThreadCore: 8; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}
Rank: 0; RankCore: 0; Thread: 3; ThreadCore: 12; Hostname: a33n06; OMP_NUM_PLACES: {0},{4},{8},{12}

Rank: 1; RankCore: 16; Thread: 0; ThreadCore: 16; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 1; ThreadCore: 20; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 2; ThreadCore: 24; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}
Rank: 1; RankCore: 16; Thread: 3; ThreadCore: 28; Hostname: a33n06; OMP_NUM_PLACES: {16},{20},{24},{28}

...

Rank: 10; RankCore: 104; Thread: 0; ThreadCore: 104; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 1; ThreadCore: 108; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 2; ThreadCore: 112; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}
Rank: 10; RankCore: 104; Thread: 3; ThreadCore: 116; Hostname: a33n05; OMP_NUM_PLACES: {104},{108},{112},{116}

Rank: 11; RankCore: 120; Thread: 0; ThreadCore: 120; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 1; ThreadCore: 124; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 2; ThreadCore: 128; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}
Rank: 11; RankCore: 120; Thread: 3; ThreadCore: 132; Hostname: a33n05; OMP_NUM_PLACES: {120},{124},{128},{132}

* Example courtesy of OLCF

27 Exascale Computing Project

VASP: MPI/OpenMP Scaling Study

Courtesy of Zhengji Zhao,NERSC

• Original MPI parallelization
– Over the bands (high level)
– Over Fourier coefficient of the bands (low level)

• MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of

bands, either by explicitly adding OpenMP
directives or via using threaded FFTW and
LAPACK/BLAS3 libraries

– No nested OpenMP
– SIMD vectorization is deployed extensively
– MPI/OpenMP scaling study to find the sweet

spot
– Other tuning options

28 Exascale Computing Project

PARSEC: Overlap Comp and Comm (1)
Original Force Pseudocode

do type
 do atom
 calc A & B
 reduceAll A & B to master
 calc ∆force = f(A&B) on master
 store force on master
 end atom
end type

➢ Preemptively create an array of
comms, one for each atom, to allow
mpi ranks without data to move to the
next atom

➢ Atom loop is threaded, allowing
multiple atoms to be solved
simultaneously

➢ Use MPI_THREAD_MULTIPLE,
multiple threads call MPI

Improved Version with
MPI_THREAD_MULTIPLE

do type
 MPI_COMM_SPLIT(atom, rank_has_data)
 !$OMP DO
 do atom
 if comm(atom) = MPI_COMM_NULL, cycle
 calc A & B
 reduceAll(comm(atom), A)
 calc ∆force = f(A&B)
 reduceAll(comm(atom), ∆force)
 store locally with master of comm(atom)
 end atom
 !$OMP END DO
end type

Courtesy of Kevin Gott, NERSC

29 Exascale Computing Project

PARSEC: Overlap Comp and Comm (2)

Courtesy of Kevin Gott, NERSC

HMMER3: Use OpenMP Task Directives
• Replace pthread implementation limited by performance of master thread

– OpenMP tasks facilitate overlap of I/O and Compute
– Forking of child tasks and task groups allow simple work stealing implementation

• Thread scaling result on 1 Edison node (24 cores of Intel Xeon Ivy Bridge)

• pthread HMMER3 Red
• OpenMP HMMER3 Green

• Dashed lines show
theoretical peak (two lines
because serial
performance is also
improved)

Courtesy of Willaim Arndt, NERSC

 HMMER3: Use task and taskgroup to Overlap I/O and Compute

Courtesy of William Arndt, NERSC

#pragma omp parallel {
#pragma omp single {

#pragma omp task { load_seq_buffer(); }
#pragma omp task { load_hmm_buffer(); }
#pragma omp taskwait
while(more HMMs) {

#pragma omp task { write_output();
 load_hmm_buffer(); }
while(more sequences) {

#pragma omp taskgroup {
#pragma omp task {
load_seq_buffer(); }
for (each hmm in hmm_buffer)

#pragma omp task {
task_kernel(); }

swap_I/O_and_working_seq_buffers()
;

}
}
#pragma omp taskwait
swap_I/O_and_working_hmm_buffers();

}
}

}

32 Exascale Computing Project

MPI+OpenMP : Turbulence Mixing Application
• Direct numerical simulations of turbulence and turbulent mixing

– Pseudo-spectral for velocity, compact finite differences for scalar.

• Uses OpenMP to orchestrate the work among CPU cores, accelerator and network
– Accelerate scalar field computation - 5x improvement
– Use OpenMP tasks to hide network, GPU data transfer and computation latencies (14% improv.)
– OpenMP Target tuning is needed to achieve good performance

Target
Computation

VXZ(ivar)

Update Host
VXZ(ivar)

MPI_ALLTOALL
VXZ(ivar),

VXY(ivar), ..

Update Target
VXY(ivar)

Target
Computation

VXY(ivar)

ivar = 1

ivar = 2

OpenMP tasks (target and threads) with dependencies

Using 8K nodes/GPUs

P.K Yeung, et al.
INCITE

Processing Elements

33 Exascale Computing Project

Overlap Communication and Computation
• MPI_THREAD_MULTIPLE: any thread can call MPI

• Can be used with OpenMP tasks to hide latencies, overheads, wait times, and
to keep the interconnect busy etc.

• Profitable when using two or more OpenMP threads

 !$OMP PARALLEL DO NUM_THREADS(2 or more)
 do i=0, N
 !$OMP TARGET DEPEND(OUT:i) NOWAIT
 ! do some computation on device (e.g. dataXY(i))
 !$OMP TARGET UPDATE FROM(dataXY(i)) DEPEND(INOUT:i) NOWAIT
 ! update data on the host (e.g. dataXY(i))
 !$OMP TASK DEPEND(INOUT:i)
 call MPI_xxx(…) to exchange data (e.g. dataXY(i), dataYZ(i))
 $OMP TARGET UPDATE TO(dataYZ(i)) DEPEND(INOUT:i) NOWAIT
 ! update data on the device (e.g. dataYZ(i))
 !$OMP TARGET DEPEND(IN:i) NOWAIT
 ! do some computation on device on dataYZ(i)
 enddo
 !$OMP END PARALLEL DO

34 Exascale Computing Project

MPI + OpenMP with GPU offload– Lessons Learned
• Matrix Multiplication: MPI for intranode communications and OpenMP to offload

computation to GPUs
– Application developers must pay extreme attention on tuning or performance won’t be there.
– Compilers/runtimes need to help for performance portability across platforms.

E
xe

cu
tio

n
tim

e
in

se

co
nd

s

Summitdev:: Power8, NVIDIA GP100, NVLINK, IB EDR

35 Exascale Computing Project

• Task reductions
• Memory allocators
• Detachable tasks
• C++14 and C++17 support
• Fortran 2008 support
• Unified shared memory
• Loop construct
• Collapse non-rec loops
• Multi-level parallelism (*)
• Scan

Major features in OpenMP 5.0

• Task to data affinity
• Meta-directives
• Data serialization for offload
• Display affinity
• Reverse offload
• Dependence objects
• Improved task dependencies
• User-defined function variants
• OMPT/OMPD tools API

35

36 Exascale Computing Project

MPI Current Proposals/Investigated Concepts for Threads

• Endpoints: let threads have their own MPI rank

• Finepoints: let threads contribute to MPI operations without having a rank per
thread (thread-based buffer partitioning)

• MPI & task-based environment: provide a MPI_TASK_MULTIPLE mode that
guarantee progress of tasks and communications

• MPI_COMM_TYPE_ADDRESS_SPACE: groups ranks that share an address
space (can be used in conjunction of endpoints)

• MPI implementations (not a standard proposal): runtime coordination to optimally
partition on-resources between MPI and OpenMP

