
Jim Cownie, Johnny Peyton
with help from Nitya Hariharan and Doug Jacobsen

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Features We Discuss

Synchronization (lock) hints

The nonmonotonic:dynamic schedule

Both

 Were new in OpenMP 4.5

 May have slipped past you

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Feature #1: Synchronisation Hints
What Are They?

A way to give more information to the OpenMP runtime about your use of locks,
critical sections and atomics.

 In OpenMP 4.5 these were lock and critical section hints: omp_lock_hint_*

 In OpenMP 5.0 they will be generalised to include hints on atomics

– Names change to omp_sync_hint_*

– But the omp_lock_hint_* names are preserved (for now) in case you
were already using them

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Why Do I Need Synchronisation Hints on Locks?

Different lock implementations have different performance properties

 Time to wake up on lock release

 Cost of contention (interference from waiting threads on working ones)

 Fairness

The LLLVM/Intel® runtime has EIGHT (!) possible lock implementations

 You can take a look at http://openmp.llvm.org

No one lock implementation can be optimal for all uses

The hints enable the use of advanced hardware features

 Intel® Transactional Synchronization Extensions (Intel® TSX)

 IBM*’s Hardware Transactional Memory in Power8* (and other) processors

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Hints on Locks and Critical

Hints are easy to apply

 Change omp_init_lock to omp_init_lock_with_hint and add the hint

 No changes to the places where the lock is used

 Apply hint to an omp critical statement

– Must have a name

– All criticals with the same name must have the same hint

Hints have no semantic implications

 Mutual exclusion is still guaranteed

 An implementation is allowed to completely ignore them!

– But we hope it won’t

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Hints on Locks and Critical

Express properties of the use of the lock/critical section

 omp_sync_hint_contended

– We expect many threads to be waiting suggests use of a fair queueing lock

 omp_sync_hint_uncontended

– We expect the lock normally to be free suggests use of an unfair spin-lock

Express suggested implementation

 omp_sync_hint_speculative

– Use transactional synchronization hardware if it’s available

 omp_sync_hint_nonspeculative

– Don’t use transactional synchronization hardware even if it’s available

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Intel® Transactional Synchronization Extensions
(Intel® TSX)
Can provide the performance of fine-grain reader/writer locks with many fewer
code changes

Speculative execution:

 Hardware monitors read and write sets inside the transaction to detect
conflicts and abort failing transactions

 Transactional writes are not seen by other threads until the transaction
commits

 No forward progress guarantees => Need another strategy as well…

When using speculative locks from OpenMP that is all hidden in the library; you
just see a normal lock

 Detectable using timestamps… (but that is a weird thing to do)

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Example: Wrapping std::map

Obvious approach to
using std::map in an
OpenMP code:

 Use a lock around all
accesses

Note:

 Only changes to use
hints are in red

 No changes to use of
the lock

OpenMPCon 2018

class lockedHash
{

std::unordered_map<uint32_t, uint32_t> theMap;
omp_lock_t theLock;

public:
lockedHash(omp_sync_hint_t hint) {omp_init_lock_with_hint(&theLock,hint);}

void insert(uint32_t key, uint32_t value) {
omp_set_lock(&theLock); // Claim the lock
theMap.insert({key,value});
omp_unset_lock(&theLock); // Release the lock

}

uint32_t lookup(uint32_t key) {
omp_set_lock(&theLock); // Claim the lock
auto result = theMap.find(key);
omp_unset_lock(&theLock); // Release the lock
return result == theMap.end() ? 0 : result->second;

}
};

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Performance of wrapped std::map with different
hints
All threads are doing lookups or
insertions on random elements of a
10,000 entry hash.

Measure three different proportions

 All insertions

 50% of each

 All lookups

Machine is 24C Xeon® Platinum
8168 at 2.7GHz

Running 1Thread/core

The only change is the hint used

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

What About Replacing Atomics With Locks?

These speculative locks seem
great!

Could we use them to replace
blocks of atomic operations?

Test case probability of
conflict is very low

 Each thread picks random
nupdates long element in
an nupdates*1024*1024
float array

OpenMPCon 2018

template <uint32_t nupdates>
static void doUpdateAtomicContig(float *values)
{
#pragma unroll(nupdates)

for (int j=0; j<nupdates; j++)
#pragma omp atomic

values[j] += 1.0;
}

template <uint32_t nupdates>
static void doUpdateLockContig(float * values)
{

omp_set_lock(&criticalLock);
#pragma unroll(nupdates)

for (int j=0; j<nupdates; j++)
values[j] += 1.0;

omp_unset_lock(&criticalLock);
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Atomic Replacement Performance

OpenMPCon 2018

Atomics remain better even than
the speculative locks

I did it so you don’t have to!

Same machine as before (24C
Xeon® Platinum 8168 at 2.7GHz)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Synchronisation Hint Conclusions

Synchronisation hints are not a panacea

BUT

 They are standard OpenMP, so all compilers should accept them (even if they
then ignore them!)

 They are easy to use (usually a single line change)

 They can give significant performance improvement in some cases

If you use locks and critical sections consider providing a hint and try
speculation.

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

schedule(nonmonotonic:dynamic)
Semantics
The dynamic schedule has existed “forever”,
what’s this “nonmonotonic” thing?

Consider the code on the right.

Can it abort?

Before OpenMP 5.0 that was unclear…

 OpenMP 4.5 added the monotonic and
nonmonotonic qualifiers to schedules so that
you can say what you need

 OpenMP 5.0 says that the unqualified
dynamic schedule is nonmonotonic (so it
can abort!)

OpenMPCon 2018

#pragma omp parallel
{

int myMax = 0;
#pragma omp for schedule(dynamic)

for (int i=0; i<N; i++)
{

if (i<myMax) abort();
myMax = i;

}
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Why Should I Care?

A nonmonotonic:dynamic
schedule can be implemented
more efficiently than a monotonic
one.

The graph shows time spent
performing scheduling as we vary
the work in each loop iteration
and the number of threads.

With small amounts of work the
cost of monotonic:dynamic
scheduling can be large

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Nonmonotonic Properties

Advantages

 Scheduling cost is significantly lower than monotonic:dynamic

=> Can be used on loops with little work in each iteration

 Gives an iteration distribution that is more like a blocked static one than a
cyclic, dynamic one

=> Can improve cache efficiency

 Handles load imbalance better than a static schedule

Disadvantage

 Still more expensive that a static schedule

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

A real code example: MPAS-Ocean

“MPAS-Ocean is designed for the simulation of the ocean system from time
scales of months to millenia and spatial scales from sub 1 km to global
circulations.”

~230,000 lines of Fortran (77 and 90) code

MPI + OpenMP code, but run here on a single node (so no network
communication occurs)

Our tests all use the “EC 60 to 30 km workload” running one simulated day with
no I/O using MPAS v6.0

We are interested in the effect of different OpenMP loop schedules, not MPI vs
OpenMP trade-offs

 Easy to change the OpenMP schedule since MPAS uses schedule(runtime)
throughout

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

MPAS-O relative performance

OpenMPCon 2018

No affinity specified

nonmonotonic:dynamic performs
usefully better than static in a few
cases and is marginally (1%) worse in
others

Caveats

 Results may differ with other
affinities (tuning affinity is a
separate, if related, issue)

 This was enough to make 2T/MPI
process better than one, but not
more than that Full configuration details in backup section

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Nonmonotonic Schedule Conclusions

You need to understand this since it will be the default dynamic schedule in
OpenMP 5.0

 Though implementations may play it safe and not enable it, so if you want it,
say so in your code and tell compiler vendors to make it the default.

It can provide useful performance improvements with a small source code
change

When you have load imbalance in a !$omp do reach for
schedule(nonmonotonic:dynamic), not just schedule(dynamic)

Compilers may still be catching up

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Overall Conclusions

OpenMP continues to evolve and you need to pay that some attention

Small enhancements to the standard can be useful and easy to apply

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Acknowledgements

MPAS-Ocean: Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W.,
& Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232.
doi:10.1016/j.ocemod.2013.04.010

MPAS-O results created by Nitya Hariharan and Doug Jacobsen (both of Intel)

OpenMPCon 2018

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Test Configuration Information

24

Performance results are based on testing as of September 2018 and may not reflect all publicly available security updates. See
configuration disclosure for details. No product can be absolutely secure.

Lock Hint and Nonmonotonic Schedule Test Configuration:
Lock Hint testing by Intel as of 10 September 2018.
Nonmonotonic schedule testing by Intel as of 10 September 2018.
2x Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz, 192GB memory
OS: Red Hat EL 7.4, Compiler: icc (ICC) 19.0.0.070 20180524

MPAS-O Test Configuration:
Testing by Intel as of 31 August 2018.
2x Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 192 GB, 12x16GB 2666 MHz DDR4.
OS: Oracle Linux Server release 7.5, kernel version - 3.10.0-862.11.6.el7.crt1.x86_64
Compiler: icc (ICC) 18.0.3 20180410
MPAS-O:– v6.0 (make CORE=ocean USE_OPENMP=true USE_PIO2=true),PIO – v2.3.1,NetCDF – 4.4.1.1,PNetCDF – 1.9.0,HDF5 – 1.10.1
All runs are EC60to30km workload, 1 day simulation with I/O switched off.

OpenMPCon 2018 24

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

25

Performance results are based on testing as of September 2018 and may not reflect all publicly available security updates. See configuration disclosure for
details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

OpenMPCon 2018 25

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

