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Bristol, UK 
•  10th largest city in UK 
•  Aero, finance, chip design 
•  HQ for Cray EMEA 
•  100 miles west of London 
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 Bristol's long HPC history 
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 What does my group do? 
•  Performance portability 

•  Programming model evaluations 
•  Code design strategies 
•  Hardware evaluations 
•  "Cross-X", where X = vendor, language, … 

•  Fault tolerance 
•  Application-based fault tolerance 
•  Reliable computing on unreliable hardrware 
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 PERFORMANCE 
PORTABILITY 
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 BUDE – MOLECULAR 
DOCKING (2013) 
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 What is BUDE? 

•  Bristol University Docking Engine 
•  Dr Richard Sessions, PI (Biochemistry) 

•  In silico virtual drug screening by docking 
•  Employs a genetic algorithm-based search 

of the six degrees of freedom in the 
arrangement of the protein and drug 
molecules to reduce the search space 
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 BUDE protein-ligand docking 
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 Target hardware 
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 BUDE results 
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"High Performance in silico Virtual Drug Screening on Many-Core Processors", 
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014 
DOI: 10.1177/1094342014528252  



 Performance portability 

•  BUDE's OpenCL implementation proved 
to be highly performance portable 
•  Compute intensive, N-body / Monte Carlo 

•  Looked at bandwidth intensive codes next, 
such as the CloverLeaf structured grid 
hydrodynamics mini-app 
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CloverLeaf: A Lagrangian-Eulerian 
hydrodynamics benchmark 

•  Solves the compressible Euler equations, 
which  describe the conservation of energy, 
mass and momentum in a system 

•  These equations are solved on a Cartesian 
grid in 2D with second-order accuracy, using 
an explicit finite-volume method 

•  Optimised parallel versions exist in OpenMP, 
MPI, OpenCL, OpenACC, CUDA and Co-
Array Fortran 
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 Results – sustained bandwidth 
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S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the 
performance portability of structured grid codes on many-core computer 
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 

48% 

54% 



 (Ninja level) performance portability 
techniques 

•  Use a platform portable parallel language 

•  Aim for 80-90% of optimal 

•  Avoid platform-specific optimisations 

•  Most optimisations make the code faster on 
most platforms 

•  This was only possible in OpenCL in 2014… 
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 HIGHER-LEVEL 
PERFORMANCE 
PORTABILITY (2014-) 
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 Moving on up 
•  Low-level programming in OpenCL or 

CUDA is all very well … 
•  ... But we don't expect most scientific 

codes to be re-written in these languages 

•  What are the emerging options? 
•  Directive-based: OpenMP 4.x, OpenACC, 

OmpSs, ... 
•  C++ based: RAJA, Kokkos, SYCL, ... 
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DOE performance portability workshop, Arizona, April 2016. 



TeaLeaf – Heat Conduction 
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•  Implicit,	sparse,	matrix-free	solvers	
on	structured	grid	
•  Conjugate	Gradient	(CG)	
•  Chebyshev	
•  PrecondiAoned	Polynomial	CG	(PPCG)	

• Memory	bandwidth	bound	
• Good	strong	and	weak	scaling	on	
Titan	&	Piz	Daint	

•  Mini-app from Mantevo 
suite of benchmarks 



 The Performance Experiment 
•  Performance	tested	on	CPU,	GPU,	and	KNC	

•  Single	node	only	(mulA-node	scaling	proven)	

•  All	ports	were	opAmised	as	much	as	possible,	
while	ensuring	performance	portability	

•  Solved	4096x4096	problem,	the	point	of	
mesh	convergence,	for	single	itera0on	
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TeaLeaf – GPU 
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All the programming models get to performance within 25% 
of OpenCL / CUDA hand-optimised code 



TeaLeaf lines of code 
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Martineau, M., McIntosh-Smith, S. Gaudin, W., Assessing 
the Performance Portability of Modern Parallel 
Programming Models using TeaLeaf, 2016, CC-PE 



TeaLeaf conclusions 
•  RAJA and Kokkos both looking promising 

•  For GPU (NVIDIA) and CPU (Intel, IBM) 
•  What about other architectures though? 

•  AMD GPUs, ARM CPUs, … 
•  Big question is: who maintains these in the 

long-term? 

•  OpenMP 4.x also looking good for GPUs 
•  Still lots of Fortran out there 
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 What we did next 
•  Based on these early successes we decided 

to do a detailed assessment of OpenMP 
4.x compiler implementations 

•  Started with something simple – a modern 
port of STREAM to OpenMP 4.x and other 
parallel programming languages 

•  Then looked at a range of codes and mini-
apps 

•  See Matt Martineau's talk on Friday for all 
the details: "Pragmatic Performance 
Portability with OpenMP 4.x" 
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 OpenMP 4: STREAM Triad 
template <class T> !
void OMP45Stream<T>::triad() !
{ !
  const T scalar = 0.3; !
!
  unsigned int array_size = this->array_size; !
  T *a = this->a; !
  T *b = this->b; !
  T *c = this->c; !
  #pragma omp target teams distribute parallel for simd \ !
    map(to: a[0:array_size], b[0:array_size], c[0:array_size]) !
  for (int i = 0; i < array_size; i++) !
  { !
    a[i] = b[i] + scalar * c[i]; !
  } !
} !
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 GPU-STREAM 2 performance 

Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S., GPU-STREAM v2.0 Benchmarking the achievable 
memory bandwidth of many-core processors across diverse parallel programming models, P3MA, ISC’16 

On those 
supported target 
architectures, 
OpenMP 
achieves good 
performance 

Third party names are the property of their owners. 

OpenMP 3.0 

OpenMP 4.x 
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 Current Compiler Support 
•  Intel began support for OpenMP 4.0 targeting the Xeon Phi 

coprocessors in 2013. 

•  Cray provided the first vendor implementation targeting 
NVIDIA GPUs in late 2015. Now supports OpenMP 4.0, and a 
subset of OpenMP 4.5. 

•  IBM has recently completed a compiler implementation using 
Clang, that fully supports OpenMP 4.5. This is being 
introduced into the Clang main trunk. 

•  GCC 6.1 introduced full support for OpenMP 4.5, and can 
target Intel Xeon Phi, or HSA enabled AMD GPUs. Still very 
immature 
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Third party names are the property of their owners. 



 Performance? 
•  To test performance we use a mixture of 

synthetic benchmarks and mini-apps. 

•  We compare against device-specific code 
written in OpenMP 3.0 and CUDA. 

•  We use OpenMP 4.x to run on a diverse 
range of currently supported architectures. 

•  Our initial expectations were low for GPUs… 
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Third party names are the property of their owners. 



 Performance? 
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CloverLeaf BUDE 

Martineau, M., McIntosh-Smith, S. Gaudin, W., Evaluating OpenMP 
4.0’s Effectiveness as a Heterogeneous Parallel Programming 
Model, 2016, HIPS’16 

Third party names are the property of their owners. 

* CCE 8.4.3, ICC 15.0.3, PGI 15.01, CUDA 7.0 on an NVIDIA® K20X, and 
Intel® Xeon® Haswell 16 Core Processor (E5-2698 v3 @ 2.30GHz) 

Really need to target local/shared 
memory for BUDE – OpenMP 5? 

OpenMP 4.0 nearly as fast as 
hand-optimised CUDA with CCE 



 Achieving good OpenMP 4.x 
performance on GPUs 

•  Our findings so far: 
•  You can achieve good performance with OpenMP 4.x. 

•  Achieve this by: 

•  Keeping data resident on the device for the greatest possible time. 

•  Collapsing loops with the collapse clause, creating a large enough 
iteration space to saturate a device such as a GPU. 

•  Using the simd directive to vectorize inner loops. 

•  Using schedule(static, 1) for coalescence (obsolete). 

•  Using profilers such as nvprof. 

32 



 Can we do even better? 
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Through extensive tuning of the clang/llvm compiler 
implementation we achieved CloverLeaf performance 
within 9% of hand optimized CUDA code… 

* Clang copy https://github.com/clang-ykt, CUDA 8.0, NVIDIA K40m 

Martineau, M., Bertolli, C., McIntosh-Smith, S., et al. Broad Spectrum 
Performance Analysis of OpenMP 4.5 on GPUs, 2016, PMBS’16 

Third party names are the property of their owners. 



 An important observation 
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OpenMP can express more levels of parallelism than we often need 
•  Leaves ambiguity when not all levels needed 
•  How the "simd" directive is implemented now and in the future will have a big 

impact on success… 



 Pragmatic portability 
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Four different styles of pragma for the same kernel is not 
what anyone wants … (See Martineau's talk for the answer!) 



 What are the main issues? 
•  Dealing with the host-device data movement got a 

lot easier in OpenMP 4.5 
•  We want to write performance portable OpenMP 

•  Ideally the same set of pragmas on all hardware 
platforms (CPUs, GPUs, …) 

•  C++ still causing all sorts of performance problems 
•  Need to be able to exploit the emerging memory 

hierarchies (HBM etc) 
•  Then there's still multi-device support, 

heterogeneous computing, dynamic load 
balancing across devices... 
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 Summary 
•  Quite a few OpenMP 4.x implementations now 

emerging (Intel, Cray, PGI, gcc, clang/llvm…) 
•  Levels of maturity are quite mixed 
•  Demonstrated OpenMP 4.x can achieve GPU 

performance similar to OpenCL/CUDA 
•  Can also achieve a reasonable degree of 

performance portability, although need to 
jump through hoops with the pragmas 

•  The signs are promising for OpenMP 4.x! 
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 Performance portability refs 
•  On the performance portability of structured grid codes on 

many-core computer architectures 
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price 
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 

•  Assessing the Performance Portability of Modern Parallel 
Programming Models using TeaLeaf 
Martineau, M., McIntosh-Smith, S. & Gaudin, W.  
Concurrency and Computation: Practice and Experience (April 
2016), to appear 

•  GPU-STREAM v2.0: Benchmarking the achievable memory 
bandwidth of many-core processors across diverse parallel 
programming models 
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N. 
First International Workshop on Performance Portable Programming 
Models for Accelerators (P^3MA), ISC 2016 

•  https://github.com/UoB-HPC/ 
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 For related software and papers 
See: http://uob-hpc.github.io 

GPU-STREAM: 
  https://github.com/UoB-HPC/GPU-STREAM 
CloverLeaf: 
  https://github.com/UoB-HPC/CloverLeaf-OpenMP4  
TeaLeaf: 
  https://github.com/UoB-HPC/TeaLeaf  
SNAP: 
  https://github.com/UoB-HPC/SNAP_MPI_OpenCL 
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 ADDITIONAL MATERIAL 
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Abbreviation System details 

K20X Cray® XC40, NVIDIA® K20X GPU, Cray compilers version 8.5, gnu 5.3, CUDA 7.5 

K40 Cray® CS cluster, NVIDIA® K40 GPU, Cray compilers version 8.4, gnu 4.9, CUDA 7.5 
 

K80 Cray® CS cluster, NVIDIA® K40 GPU, Cray compilers version 8.4, gnu 4.9, CUDA 7.5 
 

S9150 AMD® S9150 GPU.  Codeplay® copmputeCpp compiler 2016.05 pre-release. AMD-APP OpenCL 
1.2 (1912.5)drivers for SyCL.  PGI® Accelerator)TM) 16.4 OpenACC 

GTX 980 Ti NVIDA® GTX 980 Ti. Clang-ykt fork of Clang for OpenMP. PGI® Accelerator™ 16.4 OpenACC.  
CUDA 7.5 

Fury X AMD® Fury X GPU (based on the Fiji architecture). 

Sandy Bridge Intel® Xeon® E5-2670 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM) 16.4 OpenACC 
and CUDA-x86. Intel® OpenCL runtime 15.1. Codeplay® copmputeCpp compiler 2016.05 pre-
release 

Ivy Bridge Intel® Xeon® E5-2697 CPU. Gnu 4.8 for RAJA and Kokkos, Intel® compiler version 16.0 for 
stream,  Intel® OpenCL runtime 15.1. Codeplay® copmputeCpp compiler 2016.05 pre-release.   

Haswell Cray® XC40, Intel® Xeon® E5-2698 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM) 
16.3 OpenACC and CUDA-x86. Gnu 4.8 for RAJA and Kokkos 

Broadwell Cray® XC40, Intel® Xeon® E5-2699 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM) 
16.3 OpenACC and CUDA-x86. Gnu 4.8 for RAJA and Kokkos  

KNL Intel® Xeon® Phi™7210 (knights landing) Intel® compilers release 16.0. PGI® Accelerator)TM) 
16.4 OpenACC with target specified as AVX2. 

Power 8 IBM® Power 8 processor with the XL 13.1 compiler. 

Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S., GPU-STREAM v2.0 Benchmarking the achievable 
memory bandwidth of many-core processors across diverse parallel programming models, ISC’16 
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