
Evaluating OpenMP’s
Effectiveness in the

Many-Core Era

Prof Simon McIntosh-Smith

HPC Research Group
simonm@cs.bris.ac.uk

1

2

Bristol, UK
•  10th largest city in UK
•  Aero, finance, chip design
•  HQ for Cray EMEA
•  100 miles west of London

3

4

5

 Bristol's long HPC history

6

 What does my group do?
•  Performance portability

•  Programming model evaluations
•  Code design strategies
•  Hardware evaluations
•  "Cross-X", where X = vendor, language, …

•  Fault tolerance
•  Application-based fault tolerance
•  Reliable computing on unreliable hardrware

7

 PERFORMANCE
PORTABILITY

8

 BUDE – MOLECULAR
DOCKING (2013)

9

 What is BUDE?

•  Bristol University Docking Engine
•  Dr Richard Sessions, PI (Biochemistry)

•  In silico virtual drug screening by docking
•  Employs a genetic algorithm-based search

of the six degrees of freedom in the
arrangement of the protein and drug
molecules to reduce the search space

10

 BUDE protein-ligand docking

11

 Target hardware

12

 BUDE results

13

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

 Performance portability

•  BUDE's OpenCL implementation proved
to be highly performance portable
•  Compute intensive, N-body / Monte Carlo

•  Looked at bandwidth intensive codes next,
such as the CloverLeaf structured grid
hydrodynamics mini-app

14

CloverLeaf: A Lagrangian-Eulerian
hydrodynamics benchmark

•  Solves the compressible Euler equations,
which describe the conservation of energy,
mass and momentum in a system

•  These equations are solved on a Cartesian
grid in 2D with second-order accuracy, using
an explicit finite-volume method

•  Optimised parallel versions exist in OpenMP,
MPI, OpenCL, OpenACC, CUDA and Co-
Array Fortran

15

 Results – sustained bandwidth

16

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

48%

54%

 (Ninja level) performance portability
techniques

•  Use a platform portable parallel language

•  Aim for 80-90% of optimal

•  Avoid platform-specific optimisations

•  Most optimisations make the code faster on
most platforms

•  This was only possible in OpenCL in 2014…

17

 HIGHER-LEVEL
PERFORMANCE
PORTABILITY (2014-)

18

 Moving on up
•  Low-level programming in OpenCL or

CUDA is all very well …
•  ... But we don't expect most scientific

codes to be re-written in these languages

•  What are the emerging options?
•  Directive-based: OpenMP 4.x, OpenACC,

OmpSs, ...
•  C++ based: RAJA, Kokkos, SYCL, ...

19

20

DOE performance portability workshop, Arizona, April 2016.

TeaLeaf – Heat Conduction

21

•  Implicit,	sparse,	matrix-free	solvers	
on	structured	grid	
•  Conjugate	Gradient	(CG)	
•  Chebyshev	
•  PrecondiAoned	Polynomial	CG	(PPCG)	

• Memory	bandwidth	bound	
• Good	strong	and	weak	scaling	on	
Titan	&	Piz	Daint	

•  Mini-app from Mantevo
suite of benchmarks

 The Performance Experiment
•  Performance	tested	on	CPU,	GPU,	and	KNC	

•  Single	node	only	(mulA-node	scaling	proven)	

•  All	ports	were	opAmised	as	much	as	possible,	
while	ensuring	performance	portability	

•  Solved	4096x4096	problem,	the	point	of	
mesh	convergence,	for	single	itera0on	

22

TeaLeaf – GPU

23

All the programming models get to performance within 25%
of OpenCL / CUDA hand-optimised code

TeaLeaf lines of code

24

Martineau, M., McIntosh-Smith, S. Gaudin, W., Assessing
the Performance Portability of Modern Parallel
Programming Models using TeaLeaf, 2016, CC-PE

TeaLeaf conclusions
•  RAJA and Kokkos both looking promising

•  For GPU (NVIDIA) and CPU (Intel, IBM)
•  What about other architectures though?

•  AMD GPUs, ARM CPUs, …
•  Big question is: who maintains these in the

long-term?

•  OpenMP 4.x also looking good for GPUs
•  Still lots of Fortran out there

25

 What we did next
•  Based on these early successes we decided

to do a detailed assessment of OpenMP
4.x compiler implementations

•  Started with something simple – a modern
port of STREAM to OpenMP 4.x and other
parallel programming languages

•  Then looked at a range of codes and mini-
apps

•  See Matt Martineau's talk on Friday for all
the details: "Pragmatic Performance
Portability with OpenMP 4.x"

26

 OpenMP 4: STREAM Triad
template <class T> !
void OMP45Stream<T>::triad() !
{ !
 const T scalar = 0.3; !
!
 unsigned int array_size = this->array_size; !
 T *a = this->a; !
 T *b = this->b; !
 T *c = this->c; !
 #pragma omp target teams distribute parallel for simd \ !
 map(to: a[0:array_size], b[0:array_size], c[0:array_size]) !
 for (int i = 0; i < array_size; i++) !
 { !
 a[i] = b[i] + scalar * c[i]; !
 } !
} !

27

 GPU-STREAM 2 performance

Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S., GPU-STREAM v2.0 Benchmarking the achievable
memory bandwidth of many-core processors across diverse parallel programming models, P3MA, ISC’16

On those
supported target
architectures,
OpenMP
achieves good
performance

Third party names are the property of their owners.

OpenMP 3.0

OpenMP 4.x

28

 Current Compiler Support
•  Intel began support for OpenMP 4.0 targeting the Xeon Phi

coprocessors in 2013.

•  Cray provided the first vendor implementation targeting
NVIDIA GPUs in late 2015. Now supports OpenMP 4.0, and a
subset of OpenMP 4.5.

•  IBM has recently completed a compiler implementation using
Clang, that fully supports OpenMP 4.5. This is being
introduced into the Clang main trunk.

•  GCC 6.1 introduced full support for OpenMP 4.5, and can
target Intel Xeon Phi, or HSA enabled AMD GPUs. Still very
immature

29
Third party names are the property of their owners.

 Performance?
•  To test performance we use a mixture of

synthetic benchmarks and mini-apps.

•  We compare against device-specific code
written in OpenMP 3.0 and CUDA.

•  We use OpenMP 4.x to run on a diverse
range of currently supported architectures.

•  Our initial expectations were low for GPUs…

30
Third party names are the property of their owners.

 Performance?

31

CloverLeaf BUDE

Martineau, M., McIntosh-Smith, S. Gaudin, W., Evaluating OpenMP
4.0’s Effectiveness as a Heterogeneous Parallel Programming
Model, 2016, HIPS’16

Third party names are the property of their owners.

* CCE 8.4.3, ICC 15.0.3, PGI 15.01, CUDA 7.0 on an NVIDIA® K20X, and
Intel® Xeon® Haswell 16 Core Processor (E5-2698 v3 @ 2.30GHz)

Really need to target local/shared
memory for BUDE – OpenMP 5?

OpenMP 4.0 nearly as fast as
hand-optimised CUDA with CCE

 Achieving good OpenMP 4.x
performance on GPUs

•  Our findings so far:
•  You can achieve good performance with OpenMP 4.x.

•  Achieve this by:

•  Keeping data resident on the device for the greatest possible time.

•  Collapsing loops with the collapse clause, creating a large enough
iteration space to saturate a device such as a GPU.

•  Using the simd directive to vectorize inner loops.

•  Using schedule(static, 1) for coalescence (obsolete).

•  Using profilers such as nvprof.

32

 Can we do even better?

33

Through extensive tuning of the clang/llvm compiler
implementation we achieved CloverLeaf performance
within 9% of hand optimized CUDA code…

* Clang copy https://github.com/clang-ykt, CUDA 8.0, NVIDIA K40m

Martineau, M., Bertolli, C., McIntosh-Smith, S., et al. Broad Spectrum
Performance Analysis of OpenMP 4.5 on GPUs, 2016, PMBS’16

Third party names are the property of their owners.

 An important observation

34

OpenMP can express more levels of parallelism than we often need
•  Leaves ambiguity when not all levels needed
•  How the "simd" directive is implemented now and in the future will have a big

impact on success…

 Pragmatic portability

35

Four different styles of pragma for the same kernel is not
what anyone wants … (See Martineau's talk for the answer!)

 What are the main issues?
•  Dealing with the host-device data movement got a

lot easier in OpenMP 4.5
•  We want to write performance portable OpenMP

•  Ideally the same set of pragmas on all hardware
platforms (CPUs, GPUs, …)

•  C++ still causing all sorts of performance problems
•  Need to be able to exploit the emerging memory

hierarchies (HBM etc)
•  Then there's still multi-device support,

heterogeneous computing, dynamic load
balancing across devices...

36

 Summary
•  Quite a few OpenMP 4.x implementations now

emerging (Intel, Cray, PGI, gcc, clang/llvm…)
•  Levels of maturity are quite mixed
•  Demonstrated OpenMP 4.x can achieve GPU

performance similar to OpenCL/CUDA
•  Can also achieve a reasonable degree of

performance portability, although need to
jump through hoops with the pragmas

•  The signs are promising for OpenMP 4.x!

37

 Performance portability refs
•  On the performance portability of structured grid codes on

many-core computer architectures
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

•  Assessing the Performance Portability of Modern Parallel
Programming Models using TeaLeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (April
2016), to appear

•  GPU-STREAM v2.0: Benchmarking the achievable memory
bandwidth of many-core processors across diverse parallel
programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming
Models for Accelerators (P^3MA), ISC 2016

•  https://github.com/UoB-HPC/

38

 For related software and papers
See: http://uob-hpc.github.io

GPU-STREAM:
 https://github.com/UoB-HPC/GPU-STREAM
CloverLeaf:
 https://github.com/UoB-HPC/CloverLeaf-OpenMP4
TeaLeaf:
 https://github.com/UoB-HPC/TeaLeaf
SNAP:
 https://github.com/UoB-HPC/SNAP_MPI_OpenCL

39

 ADDITIONAL MATERIAL

40

Abbreviation System details

K20X Cray® XC40, NVIDIA® K20X GPU, Cray compilers version 8.5, gnu 5.3, CUDA 7.5

K40 Cray® CS cluster, NVIDIA® K40 GPU, Cray compilers version 8.4, gnu 4.9, CUDA 7.5

K80 Cray® CS cluster, NVIDIA® K40 GPU, Cray compilers version 8.4, gnu 4.9, CUDA 7.5

S9150 AMD® S9150 GPU. Codeplay® copmputeCpp compiler 2016.05 pre-release. AMD-APP OpenCL
1.2 (1912.5)drivers for SyCL. PGI® Accelerator)TM) 16.4 OpenACC

GTX 980 Ti NVIDA® GTX 980 Ti. Clang-ykt fork of Clang for OpenMP. PGI® Accelerator™ 16.4 OpenACC.
CUDA 7.5

Fury X AMD® Fury X GPU (based on the Fiji architecture).

Sandy Bridge Intel® Xeon® E5-2670 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM) 16.4 OpenACC
and CUDA-x86. Intel® OpenCL runtime 15.1. Codeplay® copmputeCpp compiler 2016.05 pre-
release

Ivy Bridge Intel® Xeon® E5-2697 CPU. Gnu 4.8 for RAJA and Kokkos, Intel® compiler version 16.0 for
stream, Intel® OpenCL runtime 15.1. Codeplay® copmputeCpp compiler 2016.05 pre-release.

Haswell Cray® XC40, Intel® Xeon® E5-2698 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM)
16.3 OpenACC and CUDA-x86. Gnu 4.8 for RAJA and Kokkos

Broadwell Cray® XC40, Intel® Xeon® E5-2699 CPU. Intel® compilers release 16.0. PGI® Accelerator)TM)
16.3 OpenACC and CUDA-x86. Gnu 4.8 for RAJA and Kokkos

KNL Intel® Xeon® Phi™7210 (knights landing) Intel® compilers release 16.0. PGI® Accelerator)TM)
16.4 OpenACC with target specified as AVX2.

Power 8 IBM® Power 8 processor with the XL 13.1 compiler.

Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S., GPU-STREAM v2.0 Benchmarking the achievable
memory bandwidth of many-core processors across diverse parallel programming models, ISC’16

41

