

KOREA INSTITUTE OF

Improving the Performance of the Global Atmospheric Model with OpenMP

Kwangjae Sung, Tae-Jin Oh and Junghan Kim

Oct 4, 2016 / OpenMPCon 2016

www.kiaps.org

- KIAPS & KIAPS Integrated Model (KIM) Introduction
- KIM Performance with OpenMP

KIAPS Introduction

- Brief Introduction
 - KIAPS Korea Institute of Atmospheric Prediction System
 - 9 Year project, approx. \$100M funded by South Korean Government
- Vision & Goals
 - To develop the next generation global NWP system optimized to the topographic & meteorological features of Korea
 - To reduce the economic loss caused by natural disasters and enhance productivity of industrial sector
 - To build science & technology capacity that stimulates NWP research

KIAPS Roadmap

Foundation and basic research

Establish the foundation of KIAPS research and development environment

 Efforts on laying out future model development – model dynamics, physics and data assimilation

Release beta version

 Complete developing major model components based on KIAPS own research

Release the KIAPS beta version model

 conduct semi realtime experiments with KIAPS beta version and evaluate it skills to the KMA operational model

step2

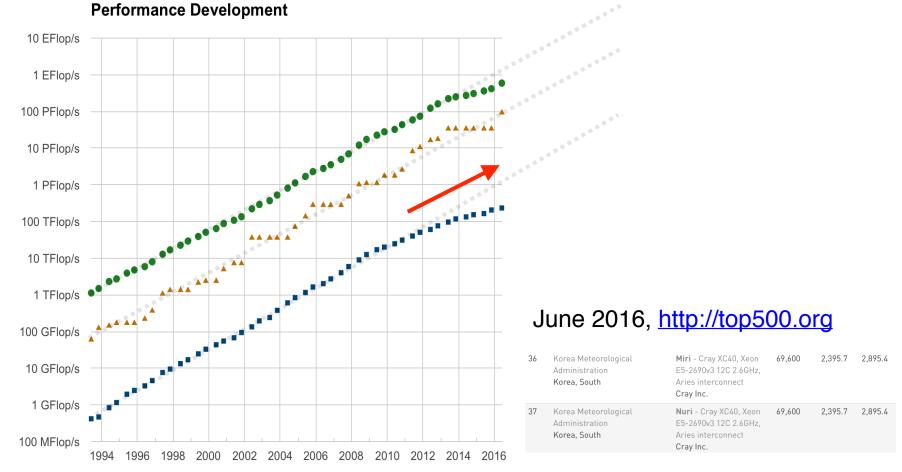
2014-2016

Finalize the operational system

Finalize the KIAPS operational version 1.0 and run on semioperational basis

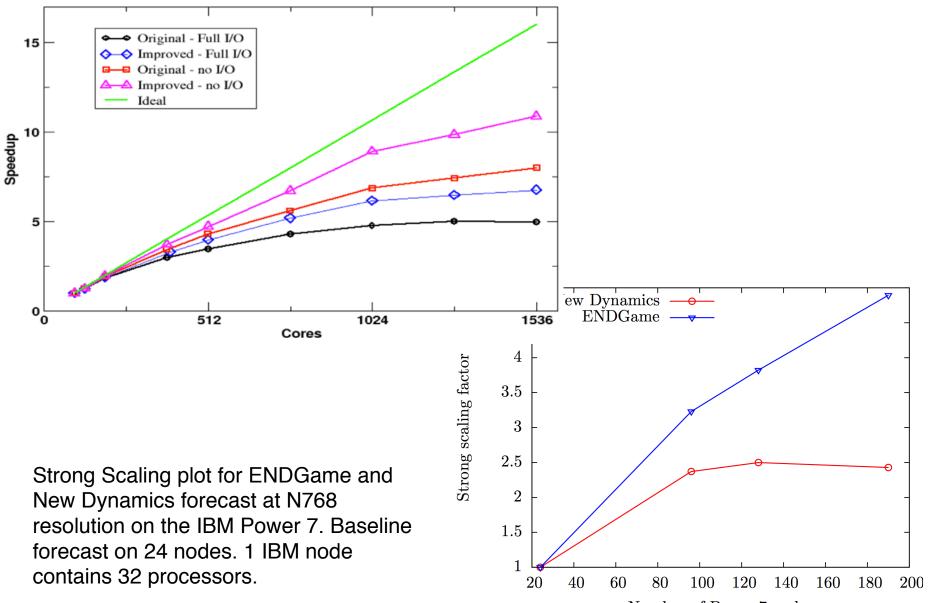
Stabilize the model system by further diagnostics and verifications

Release the KIAPS system to international users

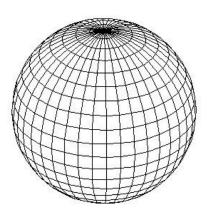


step3

2017-2019


Supercomputing Trends

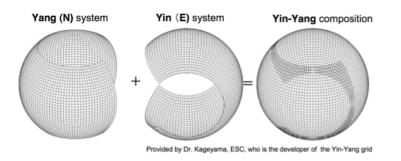
- Roughly x1000 computation power increase in 10 years
- Clock speed \rightarrow Core count (heat problem)
- Scalability will become one of the key issues in NWP modeling


Performance

UM Scalability

Number of Power 7 nodes

Lat-Lon grid and Alternatives


- Pros:
- Orthogonal
- Easy implementation of high order discretization
- Cons:
 - Anisotropic
 - Resolution variance
 - Pole Singularity
 - Poor scalability

- Pros:
 - Isotropic
 - Highly uniform resolution
- Cons:

.

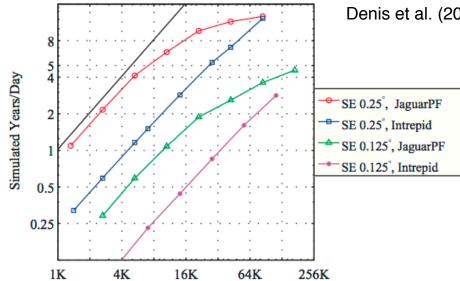
- Non orthogonal
- Difficult to implement high order discretization
- Difficult local refinement
- 12 special cells (pentagon)

- Pros: Isotropic, uniform resolution, orthogonal, local refinement is possible
- Cons: Overlaps need special treatment, local refinements at boundaries would need special treatment

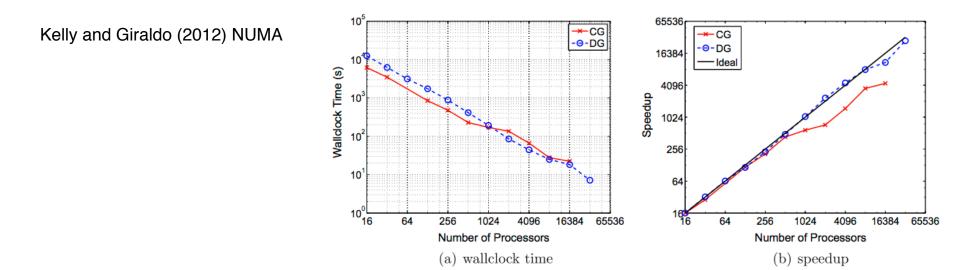
- Pros:
 - Isotropic
 - Relatively uniform
 resolution
 - Local refinement possible
- Cons
 - 8 special corner point
 - Plane boundaries need special treatment

- Global, Fully Compressible, Nonhydrostatic Model
 - High-resolution Cloud Resolving Earth System Model
 - Systematic Global + Regional high resolution simulation
 - Model that is capable of simulating across scales (Temporal & Spatial)
- Scalable on Systems of CPU O(1E5) and beyond
 - No pole singularity on the grid structure
 - Local numerical procedures (minimum communication)
- Mass conservation
- Shape-preservation, positive-definite, monotonicity, non-oscillatory for required scalars
- High order accuracy
- Computationally **Efficient** (i.e., that satisfies operational cutoff time)
- Adaptive Mesh Refinement (AMR) capability (optional)
- Readiness for unknown target architecture (CPU, GPU, Xeon Phi, ?)

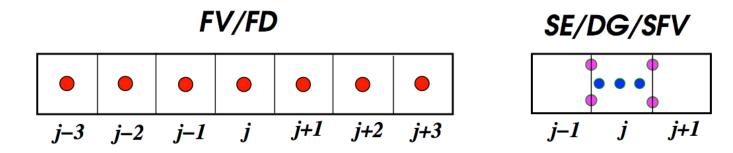
2012 DyCore Model Inter-comparison Project

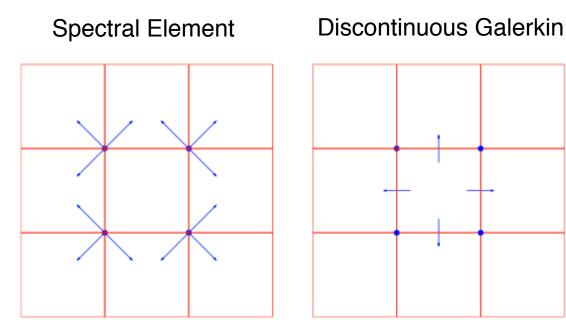

	Origin	Eqns.	Grid Structure	Horizontal	Vertical		
CAM-FV	NCAR	Н	lat-lon	C D	Lin-Rood		
CAM-SE	NCAR	н	Cubed S	SE	sigma-p L		
Dynamico	France	н	lcos(hex)	С	sigma-p L		
ENDGame	UKMO	Ν	lat-lon	С	sigma-z CP		
FIM	NOAA	н	lcos (hex)	А	theta		
FV3	GFDL	н	Cubed S	С	Lin-Rood		
GEM	Env Ca	н	lat-lon	С	sigma-p CP		
GEM-YY	Env Ca	н	Yin-Yang	С	sigma-p CP		
IFS	ECMWF	H/N	Gaussian	SH	FEM		
ICON-IAP	IAP	Ν	lcos (hex)	С	sigma-z L		
ICON	MPI-DWD	H/N	lcos (tri)	С	H:s-p , N:s-z,		
MCORE	U Michigan	Ν	Cubed S	A			
MPAS	NCAR	H/N	SCVT	С	H:s-p , N:s-z, L		
NICAM	Japan	Ν	lcos (hex)	А			
NIM	NOAA	Ν	lcos (hex)	А	sigma-z L		
OLAM	U Miami	Н	lcos (tri)	А	cut-cell z		
PUMA	U Hamburg	Н	Gaussian	Gaussian SH sign			
UZIM	CSU	Ν	Icos (hex) Z		Arakawa Konor		

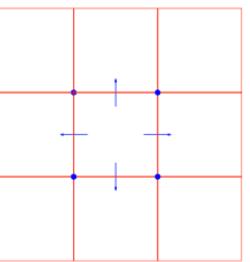
KIAPS DyCore Options

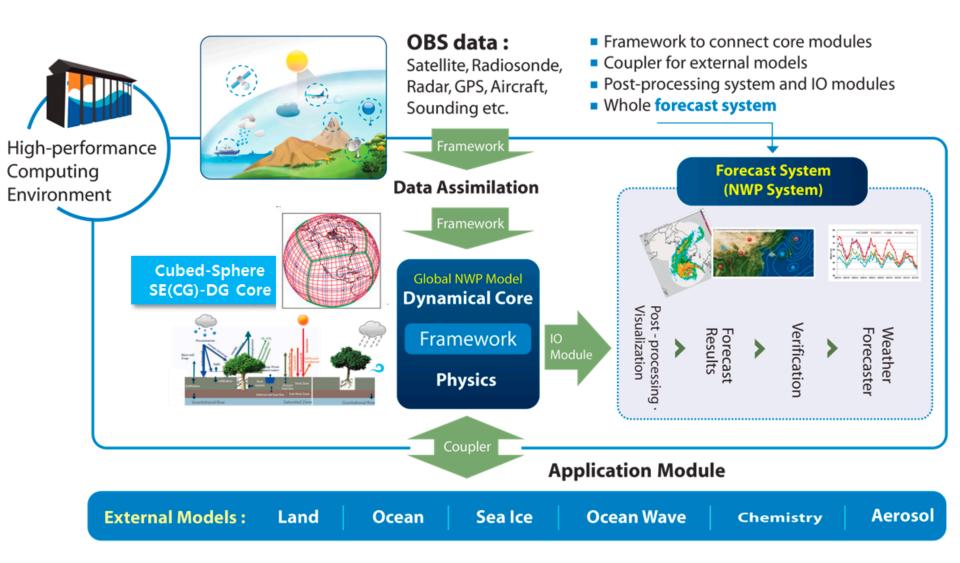

- Option 1
 - Icosahedral / SCVT
 - Finite Volume
 - NCAR MPAS, NOAA FIM/NIM, DWD/MPI-M ICON, CCSR/JAMSTEC NICAM
- Option 2
 - Cubed sphere
 - Spectral Element (SE, CG for Continuous Galerkin) / Discontinuous Galerkin
 - NCAR CAM-SE, NPS NUMA
- Option 3
 - Yin-Yang grid
 - Finite Volume / Semi-Lagrangian
 - CMC-GEM

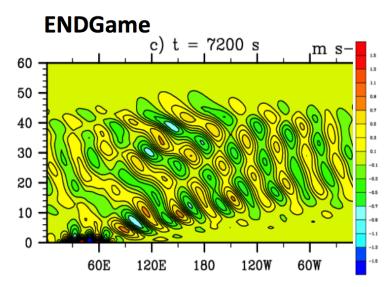
Spectral Element Model Scalability

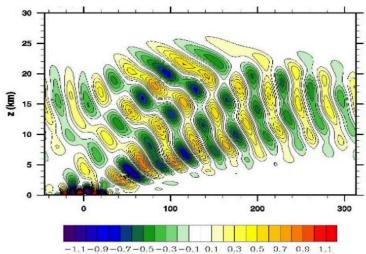

CESM1 F1850, ATM component



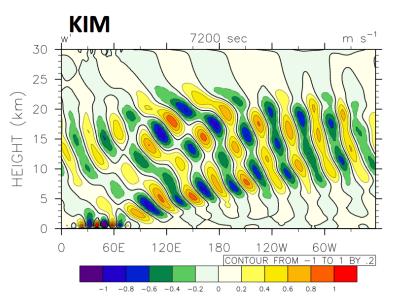

Denis et al. (2012) CAM-SE, CESM-atm component with full physics

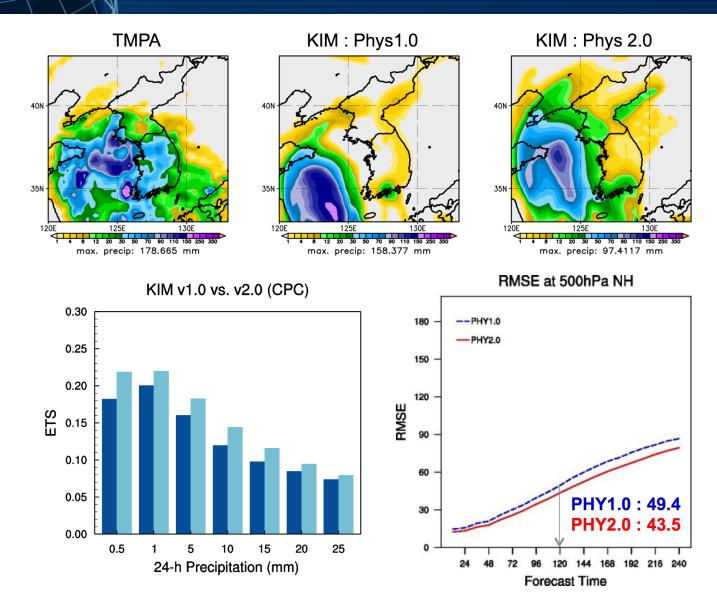

Spectral Element Communication Footprint


KIAPS Integrated Model (KIM)

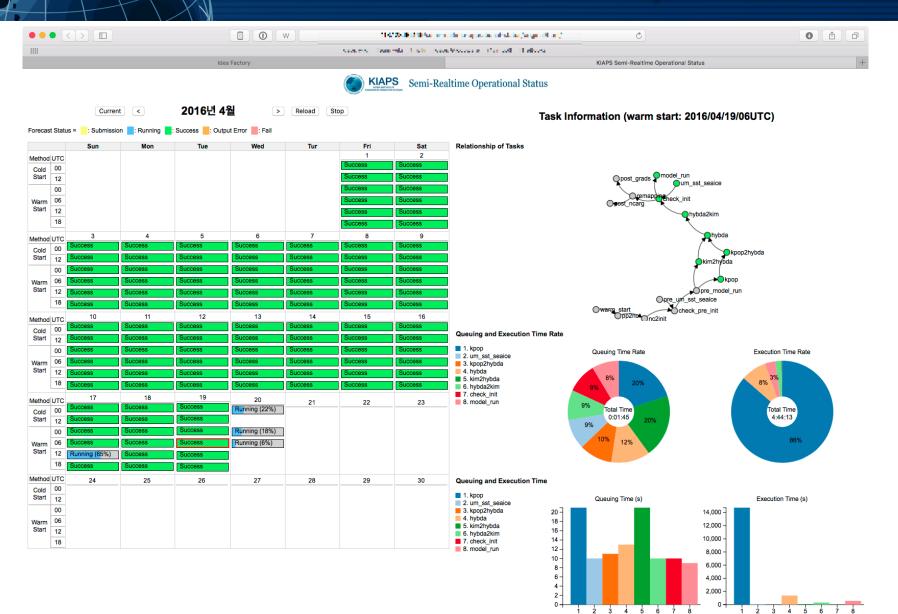

KIM Development History

		KIM1.0	KIM2.0	KIM2.1			
Dynamical	Equation	Hydrostatic	Nonhydrostatic				
core	Horizontal discretization	Spectral element method	Nonhydrostatic				
	Shortwave rad.	RRTMG					
	Longwave rad.	RRTMG					
	Land surface	NOAH V2.5	NOAH V3.0	+ 3-layer sea-ice model			
	Ocean surface layer	N/A	Kim and Hong (2010)				
Ve dif Physics Gr	Vertical diffusion	YSU (+stable BL)	+ top-down mixing				
	Gravity wave drag	O: McFarlane (1987) C: Warner and McIntyre (2001)	9)	+ Rayleigh diffusion (O)			
	Shortwave rad. Longwave rad. Land surface Ocean surface layer Vertical diffusion	SAS (Han and Pan 2011)		+ Minor bug fixed			
		Han and Pan (2011)	Hong et al. (2013)				
	Microphysics	WSM6 (Hong and Lim 2006)	WSM5 (Hong et al. 2004)	+ Minor bug fixed			
	Cloudiness	Wilson and Gregory (2003)	Prognostic scheme (Park et al.)	+ revised CPS condensate			

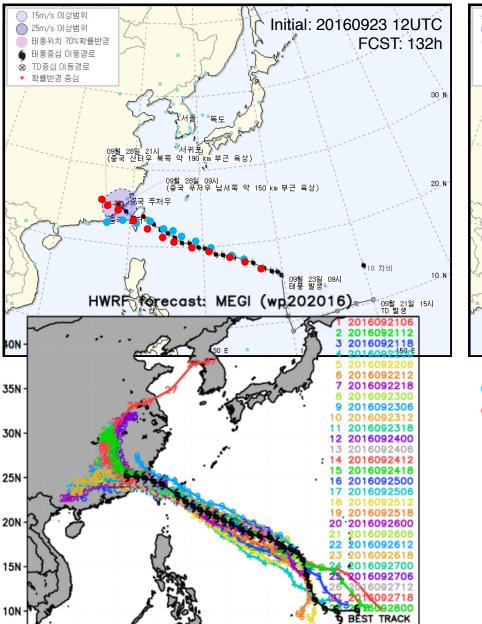

Mountain Wave

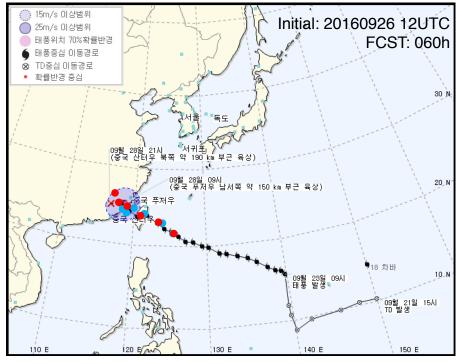


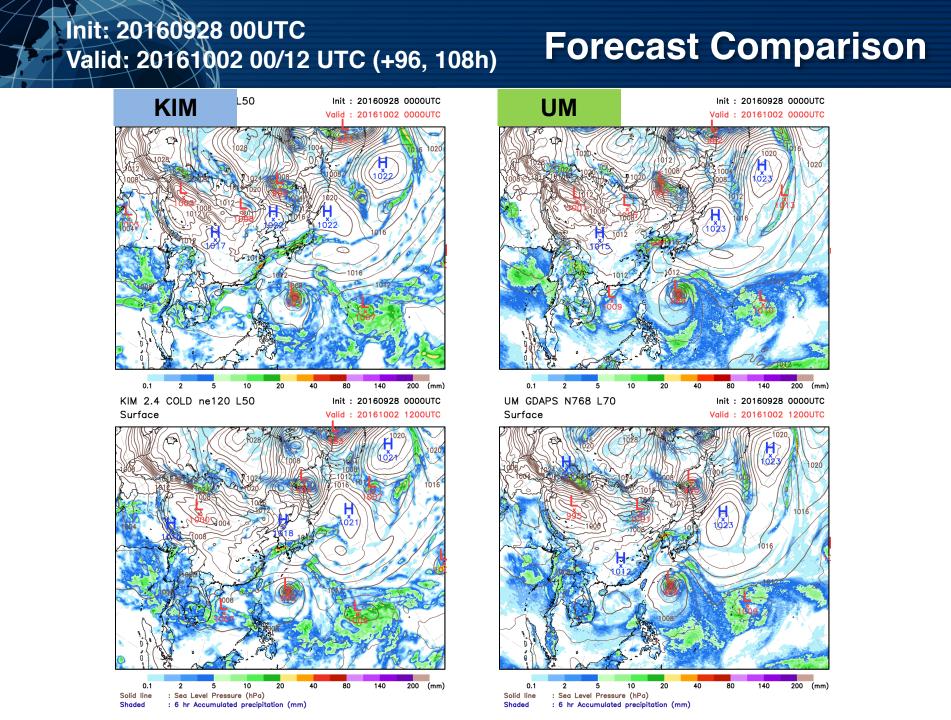
NIM wZZ case2.1 t = 7200 Lat = 0deg for t = 7200 Lat = 0deg for t = 0


Typhoon Bolaven / Physics Verification

[against CPC observation]


[against FNL analysis]


Semi-Real Time Operation Status


4F, Hankuk Computer Building, 35 BORAMAE-RO 5 GIL, SEOUL 156-849 TEL: +82-2-6959-1600 FAX: +82-2-6919-2121 Copyright © 2015 KIAPS All rights reserved.

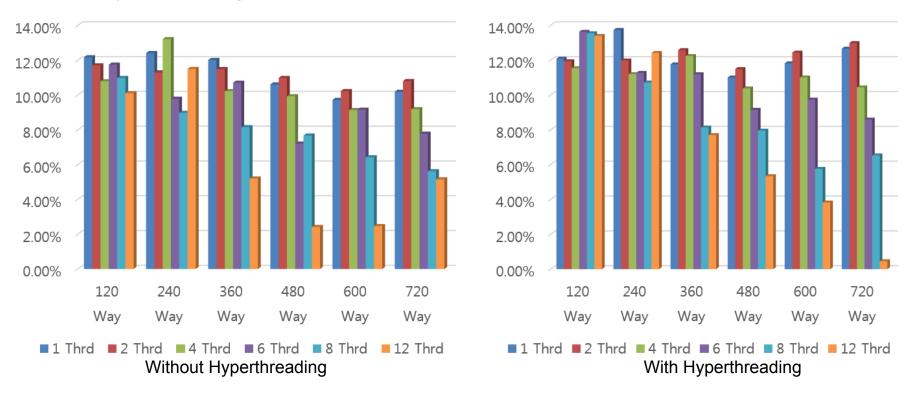
Megi Track Prediction Composite

KIM Cold (NE 120 = 25km)
 UM (N768 = 17km)

Specification of Uri System

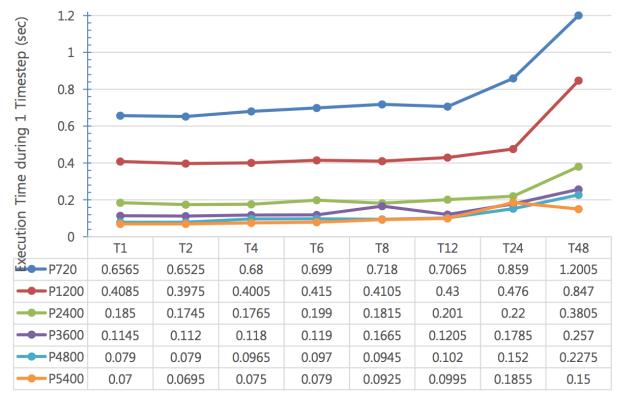
- We have been using Uri system (Cray supercomputer) for developing KIM model.
- The system configuration is as follows.

System Configuration	Description					
Inter-Connection Network	Cray Aries with Dragonfly topology					
Number of Nodes	448					
Processor Type	Intel 12-core Haswell					
Peak Performance Per Node	998.4 GFlop/s					
Total Peak Performance	447.3 TFlop/s					
Memory Per Node	128 GB					
Total Application Memory	56.0 TB					


Experimental result

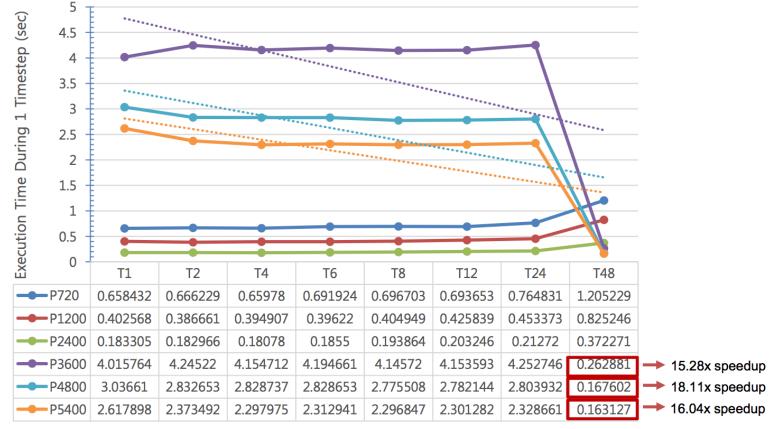
- In order to improve the computational performance for KIM, OpenMP parallelization and vectorization (simd directives) is applied to the dynamics and physics modules.
 → performance improvement ratio: about 5 ~ 10%
- The use of both the hyperthreading and OpenMP features at Uri system can improve the computational performance of the dynamics and physics modules.
 - → performance improvement ratio: about $5\% \sim 20\%$

Optimization Options	Switches		Normal			Parallelization				Parallelization & Vectorization				
		Procedure	No Hyperthreading		Hyperthreading		No Hyperthreading		Hyperthreading		No Hyperthreading		Hyperthreading	
			P720 (s)	Imprv.(%)	P1440 (s)	Imprv.(%)	P720 (s)	Imprv.(%)	P1440 (s)	Imprv.(%)	P720 (s)	Imprv.(%)	P1440 (s)	Imprv.(%)
General Optimization	-02	RunCore_SW	0.759153		0.722203	4.87%	0.718576	5.35%	0.677127	10.80%	0.700492	7.73%	0.660644	12.98%
		rad_sw_rrtmg_driver	1.576		1.424	9.64%	1.554	1.40%	1.335	15.29%	1.4335	9.04%	1.28	18.78%
		GRIMSphysics	0.123864		0.123119	0.60%	0.118729	4.15%	0.116542	5.91%	0.125585	-1.39%	0.115856	6.47%
Processor-specific	-axCORE-AVX2 -mtune=core-avx2 -march=core-avx2	RunCore_SW	0.744678	1.91%	0.718	5.42%	0.703619	7.32%	0.660568	12.99%	0.687178	9.48%	0.654119	13.84%
		rad_sw_rrtmg_driver	1.566	0.63%	1.41	10.53%	1.555	1.33%	1.3545	14.05%	1.4225	9.74%	1.2475	20.84%
		GRIMSphysics	0.122949	0.74%	0.123763	0.08%	0.119161	3.80%	0.117364	5.25%	0.125831	-1.59%	0.114636	7.45%
Inter-Procedural Optimization (IPO)	-axCORE-AVX2 -mtune=core-avx2 -march=core-avx2 -ipo	RunCore_SW	0.741051	2.38%	0.707695	6.78%	0.69411	8.57%	0.658949	13.20%	0.681339	10.25%	0.643127	15.28%
		rad_sw_rrtmg_driver	1.622	-2.92%	1.388	11.93%	1.5595	1.05%	1.3885	11.90%	1.434	9.01%	1.2825	18.62%
		GRIMSphysics	0.121153	2.19%	0.121492	1.92%	0.117492	5.14%	0.115932	6.40%	0.125483	-1.31%	0.113831	8.10%


MPI vs. OpenMP Scaling Analysis

- Experimental result
 - n-Way means the number of MPI processes times the number of OpenMP threads
 - Computational performance according to the number of threads
 As the number of MPI processes increases, when two threads is used, the computational performance of KIM is optimal regardless of the use of hyperthreading.

Hybrid MPI/OpenMP Program


- This figure is the extension to the scaling analysis using the processors more than 720-way, including 2400, 3600, and 5400-way.
- This figure also represents that it is easy to determine the optimal number of MPI tasks and OpenMP threads when the network condition for the MPI communication is not congested.
 - The use of two OpenMP threads provides the optimal performance of KIM model.

Number of Thread per MPI Tasks

Hybrid MPI/OpenMP Program

- It is difficult to determine the optimal number of MPI tasks and OpenMP threads when the network condition for the MPI communication is poor.
- In case of 3600, 4800, and 5400-way, the use of 48 OpenMP threads can offer the optimal performance (i.e., it can provide better performance compared to that of 2 OpenMP threads.)

Number of Thread per MPI Tasks

- We can achieve optimal performance when using both hyperthreading and OpenMP features (parallelization and vectorization), compared to employing only the OpenMP features.
- OpenMP enabled KIM with more threads performs significantly better than that with fewer threads in congested network conditions.
- We plan to apply OpenMP offloading feature using computational accelerators, such as intel Xeon Phi MIC and GPU to KIM model.

KOREA INSTITUTE OF ATMOSPHERIC PREDICTION SYSTEMS

Thank You!

www.kiaps.org