
© 2015 IBM Corporation

Using Fortran 2003 features in OpenMP
programs

Kelvin Li

kli@ca.ibm.com
IBM Canada Lab

OpenMPCon, Oct 3-5, 2016 | Nara, Japan

@IBM_compilers1
IBM Confidential

Outline

• Fortran	2003	standard
• Fortran	2003	features	in	OpenMP spec
• Remaining	works
• Summary

IBM Confidential

@IBM_compilers2
IBM Confidential

Overview of Fortran 2003

• formally	known	as	ISO/IEC	1539-1:2004
• published	in	2005
• a	major	update	from	the	previous	
revision	(Fortran	95)

• added	many	modern	programming	
features

IBM Confidential

@IBM_compilers3
IBM Confidential

Overview of Fortran 2003

• IEEE	module
• parametrized	derived	type
• procedure	pointers
• type	extension
• finalization
• polymorphic	entities
• ASSOCIATE	construct
• allocatable scalars
• allocatable character	length

IBM Confidential

• SELECT	TYPE	construct
• Enumerations

Data	enhancements	and	object	orientation

@IBM_compilers4
IBM Confidential

Overview of Fortran 2003

• structure	constructors
• allocate	statement
• assignment	to	an	allocatable array
• transferring	an	allocation
• more	control	of	access	from	a	

module
• renaming	operators	on	the	USE	

statement
• pointer	assignment
• pointer	intent
• the	VOLATILE	attribute
• the	IMPORT	attribute

IBM Confidential

• intrinsic	modules
• access	to	the	computing	environment
• support	for	international	character	

sets
• lengths	of	names	and	statements
• binary,	octal,	and	hex	constants
• array	constructor	syntax
• specification	and	initialization	

expressions
• complex	constants
• changes	to	intrinsic	functions

Miscellaneous	enhancements

@IBM_compilers5
IBM Confidential

Overview of Fortran 2003

• derived	type	input/output
• asynchronous	input/output
• FLUSH	statement
• IOMSG=	specifier
• stream	access	input/output
• ROUND=	specifier
• DECIMAL=	specifier
• SIGN=	specifier
• kind	type	parameters	of	integer	

specifiers
• recursive	input/output

IBM Confidential

• intrinsic	function	for	newlines	
characters

• input	and	output	of	IEEE	
exceptional	values

• comma	after	a	P	edit	descriptor

Input/output	enhancements

@IBM_compilers6
IBM Confidential

Overview of Fortran 2003

• interoperability	of	intrinsic	types
• interoperability	with	C	pointers
• interoperability	of	derived	types
• interoperability	of	variables
• interoperability	of	procedures
• interoperability	of	global	data

IBM Confidential

Interoperability	with	C

@IBM_compilers7
IBM Confidential

Overview of Fortran 2003

• implementing	the	
full	standard	still	
work	in	progress

• cost?	interest?

IBM Confidential
http://fortranwiki.org/fortran/show/Fortran+2003+status

@IBM_compilers8
IBM Confidential

Rebasing to Fortran 2003

• fortunately,	many	new	features	do	not	impact	the	
behavior	with	OpenMP

• for	example
• input/output	enhancements
• the	new	ISO_FORTRAN_ENVmodule
• syntactic	enhancements

• array	constructor	syntax:	[1,2,3,4] as	an	alternative	for	
(/1,2,3,4/)

• complex	constants:	allow	named	constants	in	a	complex	constant
real, parameter :: one=1.0, zero=0.0
complex :: c
c = (one, zero)

IBM Confidential

@IBM_compilers9
IBM Confidential

Rebasing to Fortran 2003

• the	current	base	language	is	FORTRAN	77,	Fortran	90	and	
Fortran	95

• began	the	effort	to	rebase	to	Fortran	2003	in	V4.0
• investigated	the	list	of	new	features	in	terms	of	the	impact	to	

the	spec
• areas	of	investigation

• how	the	new	objects	in	Fortran	2003	interact	with	the	data-sharing	
attribute	clauses?

• how	the	new	language	constructs	interact	with	the	OpenMP
constructs	etc?

• for	post	V4.0,	we	also	need	to	care	about	the	interaction	with	the	
data-mapping	attribute	clauses?

IBM Confidential

@IBM_compilers10
IBM Confidential

Allocatable entities

• Fortran	2003	has	major	enhancement	on	the	allocatable entities

IBM Confidential

subroutine sub(y)
real, allocatable :: arr(:) ! F90: allocatable array
real, allocatable :: y ! F2003: dummy argument
real, allocatable :: x ! F2003: allocatable scalar
type dt

real, allocatable :: z ! F2003: allocatable component
end type

x = 2.0 ! F2003: allocate and then assign
allocate(arr(10))
arr = [1.0, 2.0] ! deallocate, allocate and then assign

end subroutine

real :: t(15)
call sub(t) ! dummy argument becomes allocated

@IBM_compilers11
IBM Confidential

Allocatable entities

• the	latest	spec	supports	the	Fortran	2003	
allocatable enhancements

• using	some	of	the	features	may	cause	
performance	impact

IBM Confidential

subroutine foo(k, n)
integer, allocatable :: x(:)
integer, intent(in) :: n, k

!$omp parallel private(x)
x = [(k,i=1,n)]
...

!$omp end parallel
end subroutine

• both	are	legal	OpenMP code
• however,	taking	the	advantage	of	re-allocation	

may	incur	some	compiler	/	runtime	overhead
• each	private	copy	is	not	allocated	when	

entering	the	parallel	region
• allocation	is	done	on	each	thread

• each	private	copy	is	allocated	when	entering	
the	parallel	region
• no	allocation	is	needed	as	long	as	the	

same	shape	of	array	is	assigned	to	it
• avoid	to	have	explicit	allocation/re-allocation	

inside	a	parallel	region	if	feasible

subroutine foo(k, n)
integer, allocatable :: x(:)
integer, intent(in) :: n, k
allocate(x(n))

!$omp parallel private(x)
x = [(k,i=1,n)]
...

!$omp end parallel
deallocate(x)

end subroutine

@IBM_compilers12
IBM Confidential

Allocatable entities

IBM Confidential

real, allocatable :: x(:)
real :: y(12)
allocate(x(5))

!$omp parallel sections lastprivate(x)
!$omp section

x = [2.1, 3.1, 10.7, 1.4, 13.2]
... = x

!$omp section
x = y
... = x ! size(x) is 12

!$omp end parallel sections
! size(x) == size(y)

• the	semantic	of	the	intrinsic	
assignment	is	enhanced	in	the	
base	language

• the	spec	defines	the	lastprivate
semantic	as	if	by	intrinsic	
assignment

• the	implication	of	having	
allocatable arrays	on	the	
lastprivate clause	is	that	the	size	
and	shape	may	be	changed	due	to	
the	intrinsic	assignment

@IBM_compilers13
IBM Confidential

Associate construct

• “associates	name	entities	with	expression	or	variables	during	
the	execution	of	its	block”

IBM Confidential

c = -1
associate (as => c)

print *, as ! -1
as = 10
print *, c, as ! 10 10

end associate
print *, c ! 10

• the	feature	provides	a	convenient	
way	to	replace	some	complex	
expression	(e.g.	
a(j)%b(lbound(x,1):ubound(x,1)
,lbound(y,1):ubound(y,1))%c)	by	
a	simple	name	in	a	block

• the	associate-name (as and	Pyth)	is	
not	visible	outside	the	associate	
construct

• the	selector (c) is visible inside the
associate construct

x = 3 ; y = 4
associate (Pyth => sqrt(x*x + y*y))

x = 5
y = 12

print *, Pyth, sqrt(x*x + y*y) ! 5 13
end associate

@IBM_compilers14
IBM Confidential

Associate construct

• the	special	characteristics	of	the	associate-name and	the	selector
introduces	some	difficulties	in	working	out	the	interaction	with	the	data-
sharing	attribute	clauses

• having	the	associate-name on	the	data-sharing	attribute	clauses	does	not	
quite	make	sense
• the	associate-name does	not	have	its	own	storage

IBM Confidential

associate (Pyth => sqrt(x*x + y*y))
...

!$omp parallel private(Pyth) ! invalid
Pyth = ...

!$omp end parallel
...

end associate

associate (b => a)
...

!$omp parallel private(b) ! invalid
b = ...

!$omp end parallel
...

end associate

@IBM_compilers15
IBM Confidential

Associate construct

• using	the	associate	construct	inside	an	OpenMP construct	is	easier	to	
handle

• the	associate-name inherits	the	data-sharing	attribute	from	the	selector
• the	associate-name is	associated	with	the	private	copy

• caution	must	be	taken	when	using	this	feature
• easy	to	use	the	associate	construct	to	access	the	original	list	item	of	the	

private	variable

IBM Confidential

...
!$omp parallel private(nthread)

nthread = omp_get_thread_num()
associate (p => nthread)

... = p ! p is private
end associate

!$omp end parallel
...

x = ...
associate (assoc_name => x)

!$omp parallel private(x)
x = omp_get_thread_num()
... = assoc_name ! original list item

!$omp end parallel

end associate

@IBM_compilers16
IBM Confidential

Other major enhancements

• the	user	defined	reduction	also	introduces	complication	in	describing	the	
reduction-identifier	being	defined	in	a	module

• the	reduction-identifier is	not	a	Fortran	entity,	the	USE	mechanism	cannot	
apply	directly

• rules	are	set	up	to	set	the	behavior

IBM Confidential

module m
interface operator(.add.)

module procedure add_t
end interface

!$omp declare reduction(.add.: dt: add_dt(omp_in, omp_out))
end module

use m
type(dt) :: xdt

!$omp parallel do reduction(.add.: xdt)
do i=1, N

xdt = ...
enddo

@IBM_compilers17
IBM Confidential

Remaining work

• remaining	F2003	features
• polymorphic	entities
• parametrized	derived	types
• complexity	in	Fortran	by-descriptor	objects	(i.e.	allocatable

variable	or	pointer)	with	the	mapping	mechanism	as	well	as	the	
declare	target	mechanism

IBM Confidential

@IBM_compilers18
IBM Confidential

Summary

• works	done	for	rebasing	to	Fortran	2003
• cautious	in	using	the	new	features
• more	work	to	be	done

IBM Confidential

@IBM_compilers19

