Using Fortran 2003 features in OpenMP
programs

Kelvin Li

kli@ca.ibm.com
IBM Canada Lab

OpenMPCon, Oct 3-5, 2016 | Nara, Japan

© 2015 IBM Corporation

75
-

Outline Power Systems

Fortran 2003 standard
Fortran 2003 features in OpenMP spec

Remaining works

Summary

Overview of Fortran 2003 Power Systems

* formally known as ISO/IEC 1539-1:2004
e published in 2005

* a major update from the previous
revision (Fortran 95)

 Fortran

 added many modern programming
features

@IBM_compilers

P
=/

Overview of Fortran 2003 Power Systems

Data enhancements and object orientation

* |EEE module e SELECT TYPE construct
* parametrized derived type e Enumerations

e procedure pointers

* type extension

* finalization

e polymorphic entities

* ASSOCIATE construct

* allocatable scalars

 allocatable character length

)
S

Overview of Fortran 2003 Power Systems

Miscellaneous enhancements

* structure constructors * intrinsic modules
* allocate statement * access to the computing environment
* assignment to an allocatable array e support for international character

* transferring an allocation sets

« more control of access from a * lengths of names and statements

module * binary, octal, and hex constants
* renaming operators on the USE e array constructor syntax
statement * specification and initialization
* pointer assignment expressions
* pointerintent * complex constants
e the VOLATILE attribute e changes to intrinsic functions

* the IMPORT attribute

P
=/

Overview of Fortran 2003 Power Systems

Input/output enhancements

* derived type input/output * intrinsic function for newlines
* asynchronous input/output characters
e FLUSH statement * input and output of IEEE

exceptional values

* |IOMSG= ifi
specitier comma after a P edit descriptor

» stream access input/output
 ROUND= specifier

* DECIMAL= specifier

* SIGN= specifier

* kind type parameters of integer
specifiers

* recursive input/output

)
S

Overview of Fortran 2003 Power Systems

Interoperability with C

* interoperability of intrinsic types
* interoperability with C pointers
* interoperability of derived types
* interoperability of variables

* interoperability of procedures

* interoperability of global data

Overview of Fortran 2003

Fortran 2003 features Absoft Cray g95
Compiler Version Number 14 8.4.0
ISO TR 15580 IEEE Arithmetic Y Y P
ISO TR 15581 Allocatable

Y Y Y
Enhancements

Data enhancements and object
. . Absoft Cray g95
orientation

Parameterized derived types N Y N
Procedure pointers Y Y Y
Finalization N Y N
Procedures bound by name to a type N Y N
The PASS attribute Y Y N
Procedures bound to a type as Y N
operators

Type extension N Y N
Overriding a type-bound procedure N Y N
Enumerations Y Y Y
ASSOCIATE construct N Y N
Polymorphic entities N Y N
SELECT TYPE construct N Y N
Deferred bindings and abstract types 'Y Y N
Allocatable scalars (12) ? Y ?
Allocatable character length (12) ? Y ?
Miscellaneous enhancements Absoft Cray g95
Structure constructor changes Y Y Y
Generic procedure interfaces with the 5 5 5

same name as a type (32)

http://fortranwiki.org/fortran/show/Fortran+2003+status

GNU

5.2

<

ul<xi<l<x< D|<< <

GNU
Y

(31)

HP IBM | Intel

)
Power Systems ~F

NAG Oracle PathScale PGI

14.1/16.0 6.0

Y Y

Y Y

HP IBM Intel

N Y Y
Y Y Y
N Y Y
N Y Y
Y Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
N Y Y
HP IBM Intel
N Y Y
Y Y

Y

Y

M e implementing the
- - full standard still
L — work in progress
v« v w~n v * cost?interest?

A\
o/

Rebasing to Fortran 2003 Power Systems

e fortunately, many new features do not impact the
behavior with OpenMP
* for example
* input/output enhancements
* the new ISO_FORTRAN_ENV module
e syntactic enhancements
e array constructor syntax: [1,2,3,4] asan alternative for

(/1,2,3,4/)

* complex constants: allow named constants in a complex constant
real, parameter :: one=1.0, zero0=0.0
complex :: c

c = (one, zero)

)
S

Rebasing to Fortran 2003 Power Systems

* the current base language is FORTRAN 77, Fortran 90 and
Fortran 95

* began the effort to rebase to Fortran 2003 in V4.0

* investigated the list of new features in terms of the impact to
the spec
e areas of investigation

* how the new objects in Fortran 2003 interact with the data-sharing
attribute clauses?

* how the new language constructs interact with the OpenMP
constructs etc?

* for post V4.0, we also need to care about the interaction with the
data-mapping attribute clauses?

10

Allocatable entities

Power Systems

* Fortran 2003 has major enhancement on the allocatable entities

subroutine sub(y)

real, allocatable :: y
real, allocatable :: x

type dt
real, allocatable :: z

end type

X = 2.0

allocate(arr(10))

arr = [1.0, 2.0]
end subroutine

real :: t(15)
call sub(t)

real, allocatable :: arr(:) !

F90: allocatable array
F2003: dummy argument
F2003: allocatable scalar

F2003: allocatable component

F2003: allocate and then assign

deallocate, allocate and then assign

dummy argument becomes allocated

)
S

11

Allocatable entities

subroutine foo(k, n)
integer, allocatable :: x(:)
integer, intent(in) :: n, k
I$omp parallel private(x)
x = [(k,i=1,n)]

I$omp end parallel
end subroutine

subroutine foo(k, n)

integer, allocatable :: x(:)
integer, intent(in) :: n, k
allocate(x(n))

I$omp parallel private(x)
X = [(kJi=1Jn)]

I$omp end parallel
deallocate(x)
end subroutine

)
Power Systems ~F

the latest spec supports the Fortran 2003
allocatable enhancements

using some of the features may cause
performance impact

both are legal OpenMP code

however, taking the advantage of re-allocation
may incur some compiler / runtime overhead

each private copy is not allocated when
entering the parallel region

. allocation is done on each thread

each private copy is allocated when entering
the parallel region

* no allocation is needed as long as the
same shape of array is assigned to it

avoid to have explicit allocation/re-allocation
inside a parallel region if feasible

12

Allocatable entities

real, allocatable :: x(:)
real :: y(12)
allocate(x(5))

I$omp parallel sections lastprivate(x)
I$omp section
x =[2.1, 3.1, 10.7, 1.4, 13.2]

ce. =X
I$omp section
X =y
. = X | size(x) is 12

I$omp end parallel sections
I size(x) == size(y)

i)
Power Systems ~F

the semantic of the intrinsic
assignment is enhanced in the
base language

the spec defines the lastprivate
semantic as if by intrinsic
assignment

the implication of having
allocatable arrays on the
lastprivate clause is that the size
and shape may be changed due to
the intrinsic assignment

13

Associate construct

i)
Power Systems ~F

“associates name entities with expression or variables during

the execution of its block”

c = -1
associate (as => c)
print *, as I -1
as = 10
print *, ¢, as
end associate
print *, ¢ I 10

I 10 10

X = 3
assoc
X =
y:

Yy =4

iate (Pyth => sqrt(x*x + y*y))
5

12

print *, Pyth, sqrt(x*x + y*y) | 5 13
end associate

the feature provides a convenient

way to replace some complex
expression (e.g.
a(j)%b(lbound(x,1):ubound(x,1)
,1bound(y,1) :ubound(y,1))%c) by
a simple name in a block

the associate-name (as and Pyth) is
not visible outside the associate
construct

the selector (c) is visible inside the
associate construct

14

A\
o/

Associate construct Power Systems

e the special characteristics of the associate-name and the selector

introduces some difficulties in working out the interaction with the data-
sharing attribute clauses

* having the associate-name on the data-sharing attribute clauses does not
quite make sense

* the associate-name does not have its own storage

associate (Pyth => sgrt(x*x + y*y)) associate (b => a)

I$omp parallel private(Pyth) ! invalid I$omp parallel private(b) ! invalid
Pyth = ... b =

I$omp end parallel I$omp end parallel

end assoc1ate end assoc1ate

15

Associate construct

Power Systems

* using the associate construct inside an OpenMP construct is easier to

handle

* the associate-name inherits the data-sharing attribute from the selector
* the associate-name is associated with the private copy

e caution must be taken when using this feature
e easy to use the associate construct to access the original list item of the

private variable

I$omp parallel private(nthread)
nthread = omp_get thread _num()
associate (p => nthread)

... =p ! p is private
end associate

I$omp end parallel

X = e o o
associate (assoc_name => Xx)

I$omp parallel private(x)
x = omp_get thread _num()
. = assoc_name ! original list item

I$omp end parallel

end associate

/)
=/

16

Other major enhancements

Power Systems

the user defined reduction also introduces complication in describing the

reduction-identifier being defined in a module

the reduction-identifier is not a Fortran entity, the USE mechanism cannot

apply directly
rules are set up to set the behavior

module m

interface operator(.add.)
module procedure add t
end interface

I$omp declare reduction(.add.: dt: add_dt(omp_in, omp_out))
end module

use m
type(dt) :: xdt
I$omp parallel do reduction(.add.: xdt)
do i=1, N
xdt = ...
enddo

/)
=/

17

Remaining work Power Systems

* remaining F2003 features
* polymorphic entities
* parametrized derived types

 complexity in Fortran by-descriptor objects (i.e. allocatable
variable or pointer) with the mapping mechanism as well as the
declare target mechanism

/)
=/

18

Summary

* works done for rebasing to Fortran 2003
e cautious in using the new features
* more work to be done

Power Systems

A\
o/

Power Systems

19

"
You

1

@IBM_compilers

@

