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Heterogeneous world



Heterogeneous Systems Architecture



Unified view of memory in HSA

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space



HSA Intermediate Language (HSAIL)

prog kernel &__vector_copy_kernel(

kernarg_u64 %a,

kernarg_u64 %b)

{

workitemabsid_u32 $s0, 0;

cvt_s64_s32 $d0, $s0;

shl_u64 $d0, $d0, 2;

ld_kernarg_align(8)_width(all)_u64 $d1, [%b];

add_u64 $d1, $d1, $d0;

ld_kernarg_align(8)_width(all)_u64 $d2, [%a];

add_u64 $d0, $d2, $d0;

ld_global_u32 $s0, [$d0];

st_global_u32 $s0, [$d1];

ret;

};



HSAIL is explicitly parallel

Image from www.hsafoundation.com



Getting the compiler and run time

HSA branch:
I svn://gcc.gnu.org/svn/gcc/branches/hsa

(also available on the git mirror)

HSA run-time from AMD:
I https://github.com/HSAFoundation/HSA-Runtime-AMD

HSA kernel, firmware, KFDlib from AMD:
I https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD

openSUSE Tumbleweed HSA kernel (at the moment):
I https://build.opensuse.org/package/show/home:marxin:carrizo/

kernel-default



Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.
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Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space

=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.
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Offloading simple OMP parallel loops

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];



The rest of the Stream benchmark loops

/* Scale: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

b[j] = scalar *c[j];

/* Add: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j]+b[j];

/* Triad: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = b[j]+ scalar*c[j];



Stream benchmark performance (1)

Stream benchmark results for 64kB arrays (16k of floats) on a
Carrizo APU:
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Stream benchmark performance (2)

Stream benchmark results for 128MB arrays (32M of floats) on a
Carrizo APU:
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Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)
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Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls
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Conclusion

I HSA and its unified virtual memory

I About to be programmable with GCC through OpenMP
constructs

I Fallback on CPU implementation a crucial feature

I Gridification and code duplication

. . . any questions?
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