
GCC support to compile OpenMP 4 target
constructs for Heterogeneous System

Architecture

Martin Jambor

SUSE Labs

29th September 2015

Heterogeneous world

Heterogeneous Systems Architecture

Unified view of memory in HSA

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

HSA Intermediate Language (HSAIL)

prog kernel &__vector_copy_kernel(

kernarg_u64 %a,

kernarg_u64 %b)

{

workitemabsid_u32 $s0, 0;

cvt_s64_s32 $d0, $s0;

shl_u64 $d0, $d0, 2;

ld_kernarg_align(8)_width(all)_u64 $d1, [%b];

add_u64 $d1, $d1, $d0;

ld_kernarg_align(8)_width(all)_u64 $d2, [%a];

add_u64 $d0, $d2, $d0;

ld_global_u32 $s0, [$d0];

st_global_u32 $s0, [$d1];

ret;

};

HSAIL is explicitly parallel

Image from www.hsafoundation.com

Getting the compiler and run time

HSA branch:
I svn://gcc.gnu.org/svn/gcc/branches/hsa

(also available on the git mirror)

HSA run-time from AMD:
I https://github.com/HSAFoundation/HSA-Runtime-AMD

HSA kernel, firmware, KFDlib from AMD:
I https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD

openSUSE Tumbleweed HSA kernel (at the moment):
I https://build.opensuse.org/package/show/home:marxin:carrizo/

kernel-default

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling your compiler

Nothing to be afraid of:

0. All of https://gcc.gnu.org/install still applies

1. ./contrib/download prerequisites

2. cd ../build

3. ../src/configure. . . --enable-offload-targets=hsa
--with-hsa-runtime=/path/to/runtime. . .

4. make && make install

I Compile with -fopenmp

I set Set LD LIBRARY PATH when running the compiled
program

I Unlike support for other accelerators, you only need one
compiler.

Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space

=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.

Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space

=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.

Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space
=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.

Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space
=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.

Compiling target constructs

The compiler will attempt to compile each target construct and
each function within declare target construct into HSAIL.

We have shared virtual address space
=⇒ HSA support can ignore mapping
clauses, target data and target update

=⇒ Can fall back gracefully on CPU
implementations if it could not generate a
GPU one

System RAM

CPU GPU

IOMMUMMU

Unified virtual address space

The run-time decides whether (and to which device) offload.

Offloading simple OMP parallel loops

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

The rest of the Stream benchmark loops

/* Scale: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

b[j] = scalar *c[j];

/* Add: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j]+b[j];

/* Triad: */

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = b[j]+ scalar*c[j];

Stream benchmark performance (1)

Stream benchmark results for 64kB arrays (16k of floats) on a
Carrizo APU:

Copy
Scale Add

Triad
0

1000

2000

3000

4000

5000

6000

7000

8000

M
B/

s (
bi

gg
er

 is
 b

et
te

r)

CPU

Stream benchmark performance (1)

Stream benchmark results for 64kB arrays (16k of floats) on a
Carrizo APU:

Copy
Scale Add

Triad
0

1000

2000

3000

4000

5000

6000

7000

8000

M
B/

s (
bi

gg
er

 is
 b

et
te

r)

CPU
HSA gridified expansion

Stream benchmark performance (1)

Stream benchmark results for 64kB arrays (16k of floats) on a
Carrizo APU:

Copy
Scale Add

Triad
0

1000

2000

3000

4000

5000

6000

7000

8000

M
B/

s (
bi

gg
er

 is
 b

et
te

r)

CPU
HSA gridified expansion
HSA traditional expansion

Stream benchmark performance (2)

Stream benchmark results for 128MB arrays (32M of floats) on a
Carrizo APU:

Copy
Scale Add

Triad
0

5000

10000

15000

20000

M
B/

s (
bi

gg
er

 is
 b

et
te

r)

CPU
HSA gridified expansion
HSA traditional expansion

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Gridification

I Different way of thinking

/* Copy:*/

#pragma omp target

#pragma omp parallel for private(j)

for (j=0; j<STREAM_ARRAY_SIZE; j++)

c[j] = a[j];

I Still somewhat brittle
I Perfect construct nesting required (at IL level, this will have to

be relaxed somewhat)
I Mechanism of notes to provide feedback to the programmer

I Clauses such as num threads of course prevent gridification

I As does non-automatic loop scheduling

I Limited support for teams and distribute constructs

I Reductions through atomics almost done, we plan to support
collapse(2) and collapse(3)

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Things we do not intend to support (now)

I Anything that smacks of a critical section

I Sections and tasks and other non-loopy work-sharing

I SIMD constructs (need to change grid size, among other
things)

I Dynamic scheduling

I Things HSA cannot do (well), e.g. indirect calls

Conclusion

I HSA and its unified virtual memory

I About to be programmable with GCC through OpenMP
constructs

I Fallback on CPU implementation a crucial feature

I Gridification and code duplication

. . . any questions?

Conclusion

I HSA and its unified virtual memory

I About to be programmable with GCC through OpenMP
constructs

I Fallback on CPU implementation a crucial feature

I Gridification and code duplication

. . . any questions?

	Very Brief Overview of HSA
	HSA capable GCC
	Dive into OpenMP a bit

